Answer:
The mass of the skateboard is 1.25 kg.
Explanation:
We have,
Mass of dog, m = 5 kg
Initial speed of dog, u = 2.5 m/s
Initial speed of skateboard, u' = 0 (at rest)
The dog jumps onto the skateboard and both the dog and skateboard move with a speed of 2.00 m/s. It is the common speed of the dog +skateboard, V = 2 m/s. We need to find the mass of the skateboard. Using conservation of momentum as :

m' is mass of skateboard

So, the mass of the skateboard is 1.25 kg.
Answer:
h = 2.087 m
Explanation:
Given
m₁ = 3 kg
v₁ = 20 m/s
m₂ = 2 kg
v₂ = - 14 m/s
In a completely inelastic collision the colliding objects stick together after the collision and move together as a single object.
In the given problem, lets assume that the balls of putty are initially moving along the y axis, upward direction being the positive y direction. And the collision occurs at the origin of the coordinate system.
We can apply the equation
vs = (m₁*v₁ + m₂*v₂) / (m₁ + m₂)
⇒ vs = (3 kg*20 m/s + 2 kg*(- 14 m/s)) / (3 kg + 2 kg)
⇒ vs = 6.4 m/s (↑)
To calculate the maximum height h attained by the combined system of two balls of putty after the the collision, we use the expression for linear motion under gravity:
vf² = vi² - 2*g*h
where
vf = 0 m/s
g = 9.81 m/s²
vi = vs = 6.4 m/s
finally we get h:
h = vi² / (2*g)
⇒ h = (6.4 m/s)² / (2*9.81 m/s²) = 2.087 m
42) The sailboat travels east with velocity

, while the current moves south with speed

. Since the two velocities are perpendicular to each other, he resultant velocity will be given by the Pytagorean theorem:

and the direction is in between the two original directions, therefore south-east. So, the correct answer is
D) 42 mph southeast
43) Since the light moves by uniform motion, we can calculate the distance corresponding to one light year by using the basic relationship between velocity, space and time. In fact, we know the velocity:

and the time is one year, corresponding to:

therefore, the distance corresponding to one light year is:

Therefore, the correct answer is D.
44) For the purpose of the problem, we can assume that the light travels instantaneously from the flash to us (because the distances involved are very small), so the time between the flash and the thunder corresponds to the time it took for the sound to travel to us.
The speed of sound is

And since the time between the flash and the thunder is t=3 s, the distance is

Therefore, the correct answer is A) 3/5 mile.
Answer: The correct answer is Image B.
Explanation: For an object to accelerate, there should be unbalanced forces present. An object will move in the direction of net force.
Balanced forces are defined as the forces acting on the same object which are equal in magnitude but act in opposite direction. The net forces are 0.
Unbalanced forces are defined as the forces acting on the same object which are unequal in magnitude. The net force is non-zero.
For the given images:
Image A: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Image B: This box will not accelerate because the net force is zero as all the forces are balancing one another. Hence, the object will stay at rest.
Image C: This box will accelerate easily because the net force is non-zero and is acting in between the normal and applied force.
Image D: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Hence, the correct option is Image B.