<span>the balanced equation for the reaction is as follows
2C</span>₄H₁₀ + 13O₂ ---> 8 CO₂ + 10H₂<span>O
stoichiometry of C</span>₄H₁₀ to O₂ <span>is 2:13
stoichiometry applies to the molar ratio of reactants and products. Avagadros law states that volume of gas is directly proportional to number of moles of gas when pressure and temperature are constant.
Therefore volume ratio of reactants is equal to molar ratio, volume ratio of C</span>₄H₁₀ to O₂<span> is 2:13
2 L of </span>C₄H₁₀ reacts with 13 L of O₂<span>
then 100 L of </span>C₄H₁₀<span> reacts with 13/2 x 100 = 650 L
therefore 650 L of O</span>₂<span> are required </span>
Answer:
a. 6mL of ethanol and 35mL of water: the solute is ethanol (smallest volume) and the solvent is water (greater volume).
b. 300 g of water containing 8g of NaHCO3: the solute is NaHCO3 (smallest mass) and the solvent is water (greater mass).
c. 0.005L of CO2 and 2L of O2: the solute is CO2 (smallest volume) and the solvent is O2 (greater volume).
Explanation:
Hello there!
In this case, according to the given problem, it turns out possible for us to solve these questions by bearing to mind the fact that in a solution, we can find two substances, solute and solvent, whereas the former is in a smaller proportion in comparison to the latter; in such a way, we infer the following:
a. 6mL of ethanol and 35mL of water: the solute is ethanol (smallest volume) and the solvent is water (greater volume).
b. 300 g of water containing 8g of NaHCO3: the solute is NaHCO3 (smallest mass) and the solvent is water (greater mass).
c. 0.005L of CO2 and 2L of O2: the solute is CO2 (smallest volume) and the solvent is O2 (greater volume).
Regards!
The best answer between the two choices would be the first option TRUE because the scientific method is used to do more advance research and investigation on things.