Answer:
Explanation:
<h2><u>Given</u> :-</h2>
<h2><u>To Find</u> :-</h2>
<h2><u>Formula to be used</u> :-</h2>
Where,
- K.E. = Kinetic energy possessed by the body
- M = Mass of the body
- V = Velocity of the body
<h2><u>Solution</u> :-</h2>








- Velocity of the vehicle at the instant is

Answer:

Explanation:
Here we can use energy conservation
As per energy conservation conditions we know that work done by external source is converted into kinetic energy of the disc
Now we have

now we know that work done is product of force and displacement
so here we have


now for moment of inertia of the disc we will have



now from above equation we will have


C. Forces have mass and take up space
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>QUESTION)</u></h3>
According to the second Newton's Law,
<em>✔ We have : F = m x a ⇔ m = F/a </em>
The mass of the object is therefore 200 kg.
Answer:
171.5 N
Explanation:
The gravitational force on an object due to the Earth is given by

where
m is the mass of the object
g is the acceleration due to gravity
The acceleration due to gravity at a certain height h above the Earth is given by

where:
G is the gravitational constant
is the Earth's mass
is the Earth's radius
Here,

So the acceleration due to gravity is

We know that the mass of the object is
m = 70 kg
So, the gravitational force on it is
