Check the power source. Your thermostat may just not be connected right or at all. A blown fuse, tripped circuit breaker or dead batteries will prevent the thermostat from turning on your furnace.
Dirty thermostat? That’ll cause issues. Clean up any dust, dirt, spider webs and other debris. Any of these things can coat the inside of the thermostat and interfere with both electrical and mechanical functions of the thermostat. Put this on your get-ready-for-winter cleaning list. Just use a soft, clean brush to clean the inside components gently. Don’t get anything wet. Also you can use a can of compressed air, such as is used for electronics, to clear debris.
Check for any loose wires or terminal screws inside the thermostat. Make sure wires aren’t corroded or detached. Never remove the thermostat cover without removing the batteries or turning off the power at the fuse or breaker box. Tighten screws and secure loose wires if needed.
It may be time to replace your thermostat is it’s old. They aren’t meant to last forever and an old thermostat may be costing you a lot of money in wasted energy and time spent tinkering with an outdated model. There are great programmable thermostats available now that are easy to use and simple to connect to your existing HVAC system. Click here for more info on programmable thermostats.
Answer:
Work done gets doubled.
Explanation:
The work done by a force is given by :
W = Fd
Where
F is force and d is distance move
If the force is doubled and the distance moved remain the same, it would mean that the work done becomes double of the initial work done.
Explanation:
It is given that,
Average power per unit mass generated by Lance, 

(a) Distance to cover race, 
Average speed of the person, v = 11 m/s
If t is the time taken to cover the race.


t = 14545.46 s
Let W is the work done. The relation between the work done and the power is given by :



W = 7090911.75 J
(b) Since, 
So, in 7090911.75 J, 
W = 1694.01 J
Hence, this is the required solution.
Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
The answer is A. The outer lines change as it moves