Answer:
Explanation:
Angular momentum ( L ) = moment of inertia x angular velocity ( I X ω )
Moment of inertia of two 480 g masses about axle = 2 x mr² = 2 x 480 x10⁻³ x( 24 x 10 ⁻ 2 )² = 0. 552960 kg m².
Angular velocity = 5 rad / s.
Angular momentum = 0.552960 x 5 = 2.765 kg m2.
The direction of angular momentum will be along axle.So vector angular
momentum makes zero degree with axle.
The answer is true hopes I helped
Sounds like the shingle/ball is thrown from the roof horizontally, so that the distance it travels <em>x</em> after time <em>t</em> horizontally is
<em>x</em> = (7.2 m/s) <em>t</em>
The object's height <em>y</em> at time <em>t</em> is
<em>y</em> = 9.4 m - 1/2 <em>gt</em>²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, and its vertical velocity is
<em>v</em> = -<em>gt</em>
(a) The object hits the ground when <em>y</em> = 0:
0 = 9.4 m - 1/2 <em>gt</em>²
<em>t</em>² = 2 * (9.4 m) / (9.80 m/s²)
<em>t</em> ≈ 1.92 s
at which time the object's vertical velocity is
<em>v</em> = -<em>g</em> (1.92 s) = -18.8 m/s ≈ -19 m/s
(b) See part (a); it takes the object about 1.9 s to reach the ground.
(c) The object travels a horizontal distance of
<em>x</em> = (7.2 m/s) * (1.92 s) ≈ 13.8 m ≈ 14 m
Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
The 'net' force acting on the box is (9 - 3) = 6 newtons
in the direction that Carlos is pushing.
Force = (mass) x (acceleration)
6 = (3) x (acceleration)
Divide each side by 3 :
<em>2 m/s² = acceleration</em>