B. Heating up the reaction will increase the entropy of a reaction.
<h3>
What is entropy?</h3>
Entropy is the measure of the degree of disorderliness of a system.
Entropy is also the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
S = ΔH/T
where;
- S is entropy
- ΔH is energy input
- T is temperature
Entropy increases in reactions in which the total number of product molecules is greater than the total number of reactant molecules.
However, entropy increases as temperature increases. Thus, heating up the reaction will increase the entropy of a reaction.
Learn more about entropy here: brainly.com/question/6364271
#SPJ1
Answer:
Explanation:
Scientists know that there are 6x1023 molecules in a mole - so we have about 0.5x1023 molecules in our marble…and since every silicon dioxide molecule has one atom of silicon and two of oxygen, we have a grand total of 1.5x1023 atoms. That's 150,000,000,000,000,000,000,000 atoms
Answer:

This is a double displacement reaction, C goes with Cl in the products side and O2 goes with H. All that is left is to balance the equation, making sure each side has equal amounts of atoms.
Answer:
The correct answer to this problem is B. 7.0 X 10^-8 meters
Explanation:
To solve this problem, we have to use the following equation:
c = λν, or speed of light = wavelength*frequency
If we substitute in the values we are given by the problem, we get:
3.00 * 10^8 m/s = (4.3 * 10^15 Hz)*(wavelength)
wavelength = 6.98 * 10^-8 m
Since the given value has 2 significant figures, our answer should similarly include two significant figures since the operation in the problem was multiplication.
Therefore, the answer is B. 7.0 X 10^-8 meters.
Hope this helps!
D. Magma is injected into surrounding rock forming an igneous intrusion.
Igneous intrusion forms when magma from under the surface of the earth is slowly pushed up to occupy spaces or cracks found among rocks and cools down and solidifies before it reaches the surface of the earth.