Answer:
Explanation:
Porque la vida, nuestra vida, está controlada de manera muy importante por nuestros hábitos, los cuales influyen, de forma, aunque inconsciente en por ejemplo: nuestra salud, productividad, seguridad económica y, como resultado, también en nuestra felicidad. En resumen, en todo y a todos los que nos rodean.
Most transition metal form more than one cation but aluminum forms the Al3+ cation only.
Answer:
A
Explanation:
It is formed after the star has ended its star cycle into a supernova. The star collapsed into a neutron star that is smaller than the progenitor star but has inherited angular momentum. IT, therefore, spins faster emitting electromagnetic radiation that seems to pulsate.
Answer : (C) Hafnium is the most likely identity of the given substance.
Solution : Given,
Mass of given substance (m) = 46.9 g
Volume of given substance (V) = 3.5 
First, find the Density of given substance.
Formula used :

Now,put all the values in this formula, we get
= 13.4 g/
So, we conclude that the density of given substance (13.4 g/
) is approximately equal to the density of Mercury and Hafnium (13.53 and 13.31 g/
respectively).
According to the question the substance is solid at room temperature but Mercury is liquid at room temperature. So, Mercury is not identical to the given substance.
Another element i.e, Hafnium is the element whose density is approximately equal to the given substance and also solid at room temperature. And we know that the melting point of solid is high.
So, Hafnium is the most likely element which is the identity of the given substance.