Answer:HNO3 + NaOH → H2O + NaNO3
Explanation:
Answer:
0.020 mol
Explanation:
Let's consider the following relations:
- 20 drops of a liquid have a volume of 1 mL.
- The density of the solution is 1.685 g/mL, that is, each milliliter of solution has a mass of 1.685 g of solution.
- There are 85 g of phosphoric acid per 100 grams of solution (85 % by weight).
- The molar mass of phosphoric acid is 97.99 g/mol
With these relations, we can calculate the moles of phosphoric acid in 27 drops of solution.

<u>Answer:</u> The boiling point of water in Tibet is 69.9°C
<u>Explanation:</u>
To calculate the boiling point of water in Tibet, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm = 760 mmHg (Conversion factor: 1 atm = 760 mmHg)
= final pressure = 240. mmHg
= Heat of vaporization = 40.7 kJ/mol = 40700 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature or normal boiling point of water = ![100^oC=[100+273]K=373K](https://tex.z-dn.net/?f=100%5EoC%3D%5B100%2B273%5DK%3D373K)
= final temperature = ?
Putting values in above equation, we get:
![\ln(\frac{240}{760})=\frac{40700J/mol}{8.314J/mol.K}[\frac{1}{373}-\frac{1}{T_2}]\\\\-1.153=4895.36[\frac{T_2-373}{373T_2}]\\\\T_2=342.9K](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7B240%7D%7B760%7D%29%3D%5Cfrac%7B40700J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B373%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D%5C%5C%5C%5C-1.153%3D4895.36%5B%5Cfrac%7BT_2-373%7D%7B373T_2%7D%5D%5C%5C%5C%5CT_2%3D342.9K)
Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the boiling point of water in Tibet is 69.9°C
Yes cause elements never undergo a chemical interaction and stay
Answer:
2 double bonds and 1 single bond
Explanation:
The structural formular of the chlorate ion is given in the attached image.
The bonds present are;
- A single bond between Cl and O
- Two double bonds between Cl and O