7.30 x 10^-7 km. the others have 4 significant figures.
Answer:
1. 25%
2. 1.25
3. 1
Explanation:
Be sure to look at the x and y axis to answer these questions. All you need to do is look at the graph.
- Hope that helps! Please let me know if you need further explanation.
Answer:
3853 g
Step-by-step explanation:
M_r: 107.87
16Ag + S₈ ⟶ 8Ag₂S; ΔH°f = -31.8 kJ·mol⁻¹
1. Calculate the moles of Ag₂S
Moles of Ag₂S = 567.9 kJ × 1 mol Ag₂S/31.8kJ = 17.858 mol Ag₂S
2. Calculate the moles of Ag
Moles of Ag = 17.86 mol Ag₂S × (16 mol Ag/8 mol Ag₂S) = 35.717 mol Ag
3. Calculate the mass of Ag
Mass of g = 35.717 mol Ag × (107.87 g Ag/1 mol Ag) = 3853 g Ag
You must react 3853 g of Ag to produce 567.9 kJ of heat
Answer:
2: Moved faster and spread farther apart.
Explanation:
Restate the question: The movement of the liquid in a thermometer shows changes in temperature. An increase in temperature indicates the molecules in the liquid.
1. moved slower and closer together.
2.moved faster and spread farther apart.
3. contracted in size when heated.
4. expanded in size when heated.
Water that is cold does not have the energy to bounce of the walls, instead it is like a group of animals they group together for the warmth of the others when it gets really cold.
So it cant be 1.
We all know that power lines sag lower on a hot day (or a tire for a car, it has increases pressure). but those are different types of molecules.
So that rules out 3 and 4.
Which leaves you with 2.
The increase in temperature causes the water molecule to gain energy and move quickly, which resulted in water molecule that are farther apart and an increase in water volume.
Hope it helps!
0.0015 kilometers is for sure the answer!