Part A) Find BC, the distance from Tower 2 to the plane, to the nearest foot.
in the triangle ACD
sin16=CD/(7600+BD)--------> CD=sin16*(7600+BD)---------> equation 1
in the triangle BCD
sin24=CD/BD-----------> CD=sin24*BD---------------> equation 2
equation 1=equation 2
sin16*(7600+BD)=sin24*BD-----> sin16*7600+sin16*BD=sin24*BD
sin24*BD-sin16*BD=sin16*7600----> BD=[sin16*7600]/[sin24-sin16]
BD=15979 ft
in the triangle BCD
cos24=BD/BC---------> BC=BD/cos24-------> 15979/cos24-------> 17491
BC=17491 ft
the answer part 1) BC is 17491 ft
Part 2) Find CD, the height of the plane from the ground, to the nearest foot.
CD=sin24*BD ( remember equation 2)
BD=15979 ft
CD=sin24*15979 -----------> CD=6499 ft
the answer part 2) CD is 6499 ft
if the mean is 70 minutes, then 90 minutes is 2 standard deviations above 70. if you look at the bell curve i drew, the percent of exams that took over 90 minutes is 2.5%
<span>
</span>
<span> y = |x-2|+4
it is a negative 2 because you do the inverse</span>
Have you tried using
M
A
T
H
W
A
Y
Step-by-step explanation:
