1cathode rays plural : the high-speed electrons emitted in a stream from the heated cathode of a vacuum tube
2: a stream of electrons emitted from the cathode of a vacuum tube —usually used in plural
Answer:
Here we have some of the requirement of practical fuel are
1. It must contain large amount of stored energy. So that more amount of power output available to run the engines, motors etc.
2. It must occur in abundance in nature or be easy to produce.
3. The fuel must be made up of elements that combine easily with oxygen. Foe example if hydrogen molecules reacts with oxygen. Then the products are at the reaction of lower energy than the reactants, the result is the explosive release of energy and the product of water.
Answer:
6738eyuieouhdgcycyeiojhyrvvbbgdgdiokfjbdbhhdhdhcjviriwdhycyfjfkkdofjrjfufjjrhrhfuvuvirie884727eugig8gjfhenekwkekfjvubkdjejdn
Explanation:
buang ka
Short Answer
3: C
4: D
Problem Three
Remark
Somewhere we ought to be told that this is the Doppler Effect. I have never done a problem using this formula, so I think I'm doing it correctly, but no guarantees. My guess is that the frequency increases as it comes towards you and decreases as it moves away from you. I think that is correct.
Formula
<em><u>Givens</u></em>
- f' = observed frequency
- f = actual frequency
- v = velocity of sound or light waves.
- vo = velocity of observer (in both cases 0)
- vs = velocity of source.
f' = (v + vo) * f / (v - vs)
Solution
- v = 3*10^8 m/s
- f' = 1.1 f
- f = f
- vo = 0 We are standing still while all this is going on.
- vs = ???
f'/f = 1.1
1.1 = (3*10^8 + 0 ) / (3*10^8 - vs)
3.3*10^8 - 1.1*vs = 3*10^8
3.3*10^8 - 3*10^8= 1.1 vs
0.3 * 10^8 = 1.1 vs
2.73 * 10^7 = vs
The closest answer is 3.00 * 10^7 which is C
Problem Four
Here what is happening is that you are looking for the frequency resulting from a wave moving towards you at 1/2 the speed of sound. You are not moving.
<em><u>Givens</u></em>
- v = v
- vs = 1/2 v
- f ' = ?
- f = 1000 hz
- vo =0
f' = v/(v - 1/2v) * 1000
f' = v/ (1/2 v) * 1000
f' = 2 * 1000
f' = 2000 which is D