By definition, the refractive index is
n = c/v
where c = 3 x 10⁸ m/s, the speed of light in vacuum
v = the speed of light in the medium (the liquid).
The frequency of the light source is
f = (3 x 10⁸ m/s)/(495 x 10⁻⁹ m) = 6.0606 x 10¹⁴ Hz
Because the wavelength in the liquid is 434 nm = 434 x 10⁻⁹ m,
v = (6.0606 x 10¹⁴ 1/s)*(434 x 10⁻⁹ m) = 2.6303 x 10⁸ m/s
The refractive index is (3 x 10⁸)/(2.6303 x 10⁸) = 1.1406
Answer: a. 1.14
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm