Explanation:
Given elements:
F, Sr, P, Ca, O, Br, Rb, Sb, Li, S
Elements with the same chemical reactivity will belong to the same group on the periodic table. This implies that elements in the same column will have the same reactivity;
Li and Rb are both alkali metals in group 1
Ca and Sr are both alkali earth metals in group 2
F and Br are halogens in group 7
O and S are group 6 elements
P and Sb are both in group 5 on the periodic table
So these groupings show elements with the same chemical properties.
Major Plates
Africa Plate
Antarctic Plate
Indo-Australian Plate
Australian Plate
Eurasian Plate
North American Plate
South American Plate
<span>Pacific Plate
Minor Plates
There are dozens of smaller plates, the seven largest of which are:
</span>Arabian Plate
Caribbean Plate
Juan de Fuca Plate
Cocos Plate
Nazca Plate
Philippine Sea Plate
<span>Scotia Plate</span>
Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
The answer is (2). If you recall Rutherford's gold foil experiment, remember that a stream of positively charged alpha particles were shot at a gold foil in the center of a detector ring. The important observation was that although most of the particles passed straight through the foil without being deflected, a tiny fraction of the alpha particles were deflected off the axis of the shot, and some were even deflected almost back to the point from which they were shot. The fact that some of the alpha particles were deflected indicated a positive charge (because same charges repel), and the fact that only a small fraction of the particles were deflected indicated that the positive charge was concentrated in a small area, probably residing at the center of the atom.