2.4(10^3)
=2.4*10^3
=2.4*(10*10*10)
=2400 <span>milliliters
To </span>centiliters is<span> 2400mL= <u>240.0000cl. </u> </span>
The Selenium is the element that is likely to be the most brittle
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Answer:
c tarnishes in air
Explanation:
After silver has been exposed to air that contains sulphur gases, discoloration would occur. there would be darkening that is caused by the reaction with gases.When any silver object tarnishes, it brings about a disfiguring of that object. Hydrogen sulphide would be needed for this to happen. silver sulphide is black and a if a thin layer should form on any surface, it ill darken it. This is what we refer to as tarnishing.