Answer:
percentage yield =[ experimental yield / theoretical yield] x 100
Explanation:
Answer: Okay so here's the order lol from top to bottom
2, 1, 3, 4, 5
Explanation:
Answer:-
2328.454 grams
Explanation:-
Volume V = 18.4 litres
Temperature T = 15 C + 273 = 288 K
Pressure P = 1.5 x 10^ 3 KPa
We know universal Gas constant R = 8.314 L KPa K-1 mol-1
Using the relation PV = nRT
Number of moles of oxygen gas n = PV / RT
Plugging in the values
n = (1.5 x 10^3 KPa ) x ( 18.4 litres ) / ( 8.314 L KPa K-1 mol-1 x 288 K)
n = 11.527 mol
Now the balanced chemical equation for this reaction is
2KNO3 --> 2KNO2 + O2
From the equation we can see that
1 mol of O2 is produced from 2 mol of KNO3.
∴ 11.527 mol of O2 is produced from 2 x 11.527 mol of KNO3.
= 23.054 mol of KNO3
Molar mass of KNO3 = 39 x 1 + 14 x 1 + 16 x 3 = 101 grams / mol
Mass of KNO3 = 23.054 mol x 101 gram / mol
= 2328.454 grams
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L