Answer:
Both reactions share a common intermediate and differ only in the leaving group
Explanation:
The elimination reaction of tertiary alkyl halides usually occur by E1 mechanism. In E1 mechanism, the substrate undergoes ionization leading to the loss of a leaving group and formation of a carbocation.
Loss of a proton from the carbocation completes the reaction mechanism yielding the desired alkene.
In the cases of t-butanol and t-butyl bromide, the mechanism is the same. The both reactions proceed by E1 mechanism. The leaving groups in each case are water and chloride ion respectively.
Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
<h3>
Answer:</h3>
A. 860 kg
<h3>
Explanation:</h3>
To answer the question we need to understand that;
- Mass refers to the amount of matter in an object.
- Weight, on the other hand, refers to the gravitational pull of an object to a given surface.
- Mass is measured using a spring balance.
We also need to know that;
- The mass of an object remains constant every where irrespective of the gravitational acceleration.
- Therefore, an object on the surface of the earth would have the same mass as on the surface of the moon.
- In this case; the mass of the car remains the same on the outer space as on the back yard.
Do not ionize in solutions
Poor conductors of electricity/heat
Low melting/boiling points
gases or liquids at room temperature