Answer:
Hi How are you doing today???
<em>Here</em> as the <em>Pentagon</em> is <em>regular</em> so it's <em>all sides</em> will be of <em>equal length</em> . And if we assume It's each side be<em> </em><em><u>s</u></em> , then it's perimeter is going to be <em>(s+s+s+s+s) = </em><em><u>5s</u></em>.And as here , each <em>side</em> is increased by <em>8 inches</em> and then it's perimeter is <em>65 inches</em> , so we got that it's side after increament is<em> (s+8) inches</em> and original length is <em>s inches </em>. And if it's each side is <em>(s+8) inches</em> , so it's perimeter will be <em>5(s+8)</em> and as it's equal to <em>65 inches</em> . So , <em><u>5(s+8) = 65</u></em>


As we assumed the original side to be <em><u>s</u></em> .
<em>Hence, the original side's length 5 inches </em>
Answer:
model B is shaded to represent 37.5%
here,
=3÷8×100%
=37.5%
Answer:
A. 2·x² + 16·x + 32 ≥ 254
Step-by-step explanation:
The given dimensional relationship between the dimensions of the photo in the center of the cake and the dimensions of the cake are
The width of the cake = The width of the photo at the center of the cake, x + 4 inches
The length of the cake = 2 × The width of the cake
The area of the cake Wanda is working on ≥ 254 in.²
Where 'x' represents the width of the photo (at the center of the cake), let 'W' represent the width of the cake, let 'L' represent the length of the cake, we get;
W = x + 4
L = 2 × W
Area of the cake, A = W × L ≥ 254
∴ A = (x + 4) × 2 × (x + 4) = 2·x² + 16·x + 32 ≥ 254
The inequality representing the solution is therefore;
2·x² + 16·x + 32 ≥ 254
Answer:
hi Step-by-step explanation:April 12, 1861: Battle of Fort Sumter. ...
June 30, 1861: Battle of Philippi. ...
July 21, 1861: First Battle of Bull Run/First Battle of Manassas. ...
August 28-29, 1861: Battle of Hatteras Inlet Batteries. ...
October 21, 1861: Battle of Ball's Bluff. ...
November 7, 1861: Battle of Belmont. ...
January 19, 1862: Battle of Mill Springs.