<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Intermolecular forces in solids are strongest than in liquids and gases. Gases have the least strong intermolecular forces. Intermolecular forces are weak and are significant over short distances between molecules (determined by Coulomb’s law). The farther away from the molecules the weaker the intermolecular forces. Since molecules in solids are the closest, the intermolecular force between them as the strongest. Conversely, since gas molecules are farthest apart, the intermolecular forces between them are the weakest.
Answer:
a. The second run will be faster.
d. The second run has twice the surface area.
Explanation:
The rate of a reaction is proportional to the surface area of a catalyst. Given the volume (V) of a sphere, we can find its surface area (A) using the following expression.

The area of the 10.0 cm³-sphere is:

The area of each 1.25 cm³-sphere is:

The total area of the 8 1.25cm³-spheres is 8 × 5.61 cm² = 44.9 cm²
The ratio of 8 1.25cm³-sphere to 10.0 cm³-sphere is 44.9 cm²/22.4 cm² = 2.00
Since the surface area is doubled, the second run will be faster.
<span>Metals tend to lose electrons and form electro-positive ions / cations.</span>
Answer is: <span>- delta G.
</span>The change in Gibbs free energy (ΔG), at constant temperature and pressure, is: <span>ΔG=ΔH−TΔS.
</span>ΔH<span> is the change in enthalpy.
</span>ΔS is change in entropy.
T is temperature of the system.
When ΔG is negative, a reaction (<span>occurs without the addition of external energy)</span><span> will be spontaneous (</span>exergonic).