Answer:
2 m/s
Explanation:
From the conservation of momentum, the initial momentum of the system must be equal to the final momentum of the system.
Let the 10.00 kg mass be
and the 12.0 kg mass be
. When they collide and stick, they have a combined mass of
.
Momentum is given by
. Set up the following equation:
, where
is the desired final velocity of the masses.
Call the right direction positive. To indicate the 12.0 kg object is travelling left, its velocity should be substitute as -8.00 m/s.
Solving yields:

Answer:
Answer:
101325 + 10055.25h
//
h = 10.1 m
Explanation:
the pressure at sea level = 1 atm = 101325 Pa
density of sea water = 1025 kg/ m^(3)
pressure due to fluid height = pgh
Absolute pressure = 101325 + 1025*9.81*h
= 101325 + 10055.25h
where h= 0 at sea level at increases downwards
//
101325 = 1025* 9.81* h
h = 10.1 m
Explanation:
In optics, you have to create a layer of coating that is approximately 1/4 of the light's wavelength. The working equation for this problem is:
d = λ₀/4n,
where
λ₀ is the wavelength of the incident light
n is the refractive index of the coating
Substituting the values,
d = (650 nm)/4(1.39)
<em>d = 116.9 nm</em>
Answer:
a. get warmer.
Explanation:
When the water vaporous reach the upper layer of the atmosphere they get a cooler air to which they loose their temperature and condense to form clouds as a the temperature of the air increases.
It may be noted that the water looses its high amount of latent heat of vaporization to condense into water this significantly increases the temperature of the air in contact.
The less dense areas created as a sound wave propagates are called Rarefactions