<span>a)
Capacitance = k x ε° x area / separation
ε° = 8.854 10^-12 F/ m
k = 2.4max
average k = 0.78 / 1.27 * 2.4 +(1.27- 0.78) / 1.27 * 1 = 1.474 + 0.386 = 1.86
(61.4 % separation k = 2.4 --- 38.6 % k = 1 air --- average k = 0.614 * 2.34 + 0.386 * 1 = 1.86
area = 145 cm2 = 0.0145 m2
separation = 1.27 cm 0.0127 m
C = 1.86 * 8.854 10^-12 * 0.0145 / 0.0127 = 18.8 pF
b) Q = C * V --- 18.8 * 83 = 1560.4 pC = 1.5604 nC
c) E = V / d = 83 / 0.0127 = 6535.4 V/m </span>
The answer is decompression melting
I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
The vertical component is = vsinx m/s
If you know the angle, substitute the value of x.
If you know the velocity at which it is moving, substitute it for v
Hope it helps :)