1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
4 years ago
6

When a train’s velocity is 12.0 m/s east-ward, raindrops that are falling vertically with respect to the earth make traces that

are inclined 30.0∘ to the vertical on the windows of the train. (a) What is the horizontal component of a drop’s velocity with respect to the earth? With respect to the train? (b) What is the magnitude of the velocity of the raindrop with respect to the earth? With respect to the train?
Physics
1 answer:
Elanso [62]4 years ago
4 0

Answer:

a. Horizontal component  v = 12 m/s

b. Magnitude of velocity v = 20.78 m / s  

Explanation:

Vₓ = 12.0 m / s eastward

β = 30.0 °

So

a.

Vt = Vₐ - Vₓ

Vₐ = 0 i

Vt = 0i - 12.0 = - 12 m/s

b.

Vₙ = 12 / sin (30 °)

Vₙ = 24 m / s

Vₙ = 24 * con (30 °)

Vₙ = 20.78 m / s

You might be interested in
A child whose weight is 287 N slides down a 7.20 m playground slide that makes an angle of 31.0° with the horizontal. The coeff
natulia [17]

Answer:

a

H  =212.6 \  J

b

v  =  7.647  \  m/s

Explanation:

From the question we are told that

   The child's weight is  W_c  =  287 \ N

    The length of the sliding surface of the playground is  L =  7.20 \  m

    The coefficient of friction is  \mu =  0.120

      The angle is \theta = 31.0 ^o

      The initial  speed is  u =  0.559 \  m/s

Generally the normal force acting on the child is mathematically represented as

=>    N  =  mg  *  cos \theta

Note  m *  g  =  W_c

Generally the frictional force between the slide and the child is    

         F_f  =  \mu *  mg  *  cos \theta

Generally the resultant force acting on the child due to her weight and the frictional  force is mathematically represented as

      F =m* g sin(\theta) - F_f

Here  F is the resultant force and it is represented as  F =  ma

=>   ma =   m* g sin(31.0)  - \mu *  mg  *  cos (31.0)

=>   a =  g sin(31.0)-  \mu *  g  *  cos (31.0)

=>  a =    9.8 *  sin(31.0) - 0.120 *  9.8  *  cos (31.0)

=>a =  4.039 \ m/s^2

So

   F_f  =  0.120  * 287  *  cos (31.0)

=> F_f  = 29.52 \  N

Generally the heat energy generated by the frictional  force which equivalent tot the workdone by the frictional force  is mathematically represented as

     H  =  F_f  * L

=>  H  = 29.52 *  7.2

=>  H  =212.6 \  J

Generally from kinematic equation we have that

    v^2  =  u^2  +  2as

=>  v^2  =  0.559^2  +  2 * 4.039 * 7.2

=>  v  =  \sqrt{0.559^2  +  2 * 4.039 * 7.2}

=>  v  =  7.647  \  m/s

   

6 0
3 years ago
Is it possible for a car to be accelerating to the west while it is driving to the east?
Ber [7]

Answer:

Yes

Explanation:

If the acceleration has an opposite direction to the velocity of the car, this means that it is opposed to is motion. Therefore, it is called deceleration, since the car's velocity will decrease until it stops and then will start it moving towards the west.

8 0
3 years ago
A 1000.0 kg truck accelerates from 20.0 m/s to 25.0 m/s over a distance of 300.0 m. What is the average net force on the truck?
choli [55]

Answer:

The average net force on the truck is 375 Newtons.

Explanation:

Using Newton's 3rd equation of motion, we have :

v^{2} - u^{2} = 2×a×s

where, v = final velocity = 25 m/s

u = initial velocity = 20 m/s

a = acceleration

s = distance traveled = 300 m

Using these values in the above equation, we get acceleration = 0.375 m/s^{2}

Using Newton's second law, we have:

F=m×a

where m = mass = 1000 kg

a= acceleration = 0.375 m/s^{2}

Putting values we have F=375 N

3 0
3 years ago
2. Tomas is hanging from a tree limb, that is inclined at a 65° angle. The force
LUCKY_DIMON [66]

Answer:

57 N

Explanation:

Were are told that the force

of gravity on Tomas is 57 N.

And it acts at an inclined angle of 65°

Thus;

The vertical component of the velocity is; F_y = 57 sin 65

While the horizontal component is;

F_x = 57 cos 65

Thus;

F_y = 51.66 N

F_x = 24.09 N

The net force will be;

F_net = √((F_y)² + (F_x)²)

F_net = √(51.66² + 24.09²)

F_net = √3249.0837

F_net = 57 N

4 0
3 years ago
A 65 kg box is lifted by a person pulling a rope a distance of 15 meters straight up at a constant speed. How much Power is requ
Y_Kistochka [10]

Answer:

Power is 1061.67W

Explanation:

Power=force×distance/time

Power=65×9.8×15/9 assuming gravity=9.8m/s²

Power=3185/3=1061.67W

8 0
3 years ago
Other questions:
  • ¿CUAL ES LA CAUSA DE UNA ONDA ESTACIONARIA?
    5·1 answer
  • Explain the flow of electrons from the battery through the circuit
    14·1 answer
  • A combination of two or more simple machines is a (n)
    10·1 answer
  • What would the weight of an astronaut be on Saturn if his mass is 68 kg and acceleration of gravity on Saturn is 10.44 m/s2? Ple
    14·1 answer
  • A bicyclist was moving at a rate of 8 m/s, and then sped up to 10 m/s. If the cyclist has a mass of 120 kg, how much work was ne
    11·2 answers
  • If the accuracy in measuring the position of a particle increases, the accuracy in measuring its velocity will
    11·1 answer
  • A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to the
    11·1 answer
  • HELP ASAPPPPPPP !!!!
    15·1 answer
  • The ,______provides rigidity and protection to the plant cell​
    14·1 answer
  • Darius' boat sails into the harbor with a speed of 80m/s. After 20 seconds, Darius' boat has come to a stop at the dock. What is
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!