I choose the option D.
The velocity is constant, so it’s acceleration is 0 m/s^2.
X = 2 + 15 x 1 + 0 = 17 m
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
Answer:
I think it is 5.6. This is my answer
Answer:
0.023 Ohms
Explanation:
Given data
Length= 2.8m
radius= 1.03mm
current I= 1.35 A
voltage V= 0.032V
We know that from Ohm's law
V= IR
Now R= V/I
Substitute
R= 0.032/1.35
R= 0.023 Ohms
Hence the resistance is 0.023 Ohms
Answer:
581 kJ, work was done by the system
Explanation:
According to the first law of thermodynamics:

where
is the change in internal energy of the system
Q is the heat absorbed by the system (positive if absorbed, negative if released)
W is the work done by the system (positive if done by the system, negative if done by the surrounding)
In this problem,


Therefore the work done by the system is

And the positive sign means the work is done BY the system.