We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4
Answer: The wave can flip upside down.
Reflection is the bending of a wave when it cannot pass through. For example, plain mirrors which are flat, a ray of light hits the mirror and is reflected from the mirror since it cannot pass through
When reflection occurs the speed and frequency of the wave does not change but the wave is flipped upside down.
The speed does not change because speed is affected by the change in medium the frequency also remains the same since the energy of the wave does not change.
If you do not have to use relative physics but classic physics, this is how you solve it:
Speed of light = c = 3 * 10^5 km/s
Speed of your foe respect to you: 0.259c
Speed of the torpedo respect to you: 0.349c
Speed of the torpedo respect your foe: 0.349c - 0.259c = 0.09c
Conversion to km/s = 0.09 * 3.0 * 10^5 km/s = 27000 km/s
Note that this solution, using classic physics do not take into account time and space dilation.
Answer: 27000 km/s
Answer:
It is due to the large impulse is imparted on the flour.
Explanation:
A ball is moving faster.
When a ball is moving faster strikes to the flour, the change in momentum is large and thus the impulse imparted on the flour is large.
Impulse = change in momentum
So, as the flour experiences large impulse and large momentum so that the flour spreads out.
If the change in momentum is large so the flour spreads out is more.