9514 1404 393
Answer:
9. ±1, ±2, ±3, ±6
11. ±1, ±2, ±3, ±4, ±6, ±12
Step-by-step explanation:
The possible rational roots are (plus or minus) the divisors of the constant term, divided by the divisors of the leading coefficient.
Here, the leading coefficient is 1 in each case, so the possible rational roots are plus or minus a divisor of the constant term.
__
9. The constant is -6. Divisors of 6 are 1, 2, 3, 6. The possible rational roots are ...
±{1, 2, 3, 6}
__
11. The constant is 12. Divisors of 12 are 1, 2, 3, 4, 6, 12. The possible rational roots are ...
±{1, 2, 3, 4, 6, 12}
_____
A graphing calculator is useful for seeing if any of these values actually are roots of the equation. (The 4th-degree equation will have 2 complex roots.)
Please ask the question in English, if you are not able to, I believe you are in the wrong language section and suggest you try something else before you get your question taken down.
The answer is -4 + 2 + -0.25 + 0.5.
I do believe it is answer c, but not 100% on that due to the fact that when i worked it i got c, but when i googled alot got other answers. sorry i know thats not much help