Answer:
68% of pregnancies last between 250 and 282 days
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean = 266
Standard deviation = 16
What percentage of pregnancies last between 250 and 282 days?
250 = 266 - 16
250 is one standard deviation below the mean
282 = 266 + 16
282 is one standard deviation above the mean
By the Empirical Rule, 68% of pregnancies last between 250 and 282 days
Answer:
???
Step-by-step explanation:
<em>Without</em> using a truth table:
(<em>p</em> ⇒ <em>q</em>) ∨ <em>q</em> ⇔ (¬<em>p</em> ∨ <em>q</em>) ∨ <em>q</em> ⇔ ¬<em>p</em> ∨ <em>q</em> ⇔ <em>p</em> ⇒ <em>q</em>
<em />
<em>With</em> a table:
<em>p</em> … <em>q</em> … <em>p</em> ⇒ <em>q</em> … (<em>p</em> ⇒ <em>q</em>) ∨ <em>q</em>
T … T … T … T
T … F … F … F
F … T … T … T
F … F … T … T
Answer:
1.05
Step-by-step explanation:
Answer:C
Step-by-step explanation: Because its just so easy :/