Answer:
Mass of ion will be
Explanation:
We have given ion is triply charged that is 
Radius r = 36 cm = 0.36 m
Velocity of the electron 
Magnetic field B = 0.55 T
We know that radius of the path is given by 

The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
The meters per second
+1t a second / 2t
Answer:
X-rays travel through space faster than radio waves.
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:

Electromagnetic waves are classified into 7 different types, according to their wavelength/frequency. From shortest to longest wavelength (and so, from highest to lowest frequency), we have:
Gamma rays
X rays
Ultraviolet
Visible light
Infrared radiation
Microwaves
Radio waves
Now we can analyze the 4 statements:
X-rays and radio waves are both forms of light, or electromagnetic radiation --> TRUE. They are both types of electromagnetic waves.
X-rays have higher frequency than radio waves. --> TRUE, as we can see from the table above.
X-rays have shorter wavelengths than radio waves. --> TRUE, as we can see from the table above.
X-rays travel through space faster than radio waves. --> FALSE: all electromagnetic waves travel in space at the same speed, the speed of light.
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1