Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
Answer:
C
Explanation:
Vector A points up
Vector B points right
The combination must be both up and right which is C
Answer: Wernicke's Area
Explanation: Wernicke's area is the region of the brain responsible for language <em>interpretation</em>. Broca's area is associated with language <em>production.</em>
<h2>Answer:</h2>
<u>Ball A has more kinetic energy</u>
<h2>Explanation:</h2>
As we know that Kinetic energy is given by
K. E = 1/2 mv²
Since K E is dependent upon both mass and velocity so increasing mass will produce more kinetic energy if the speed remains constant
As the mass of ball A is greater than ball B so we can say that the kinetic energy of ball is more than ball B