The answer is true: the pressure of a gas will decrease as temperature decreases in a rigid container.
This is one of the central gas laws called the Gay-Lussac law that states for a given gas at a constant volume, the pressure of the gas is directly proportional to its temperature. We also know that as temperature reduces, so too does molecular interaction. Increased temperature results in increased pressure, and decreased temperature therefore results in decreased pressure.
Answer:
The total number of oscillations made by the wave during the time of travel is 1.4 Oscillations. Strictly speaking, the number of complete oscillations is 1.
Explanation:
The required quantity is the number of complete oscillations made by the traveling wave. The amplitude time and frequency are not needed to calculate the number of oscillations as it is the ratio of the distance traveled to the wavelength( minimum distance that must be traveled to complete one oscillation) of the wave. So the total number of oscillations is 1.4 while the number of complete oscillations is 1 (strictly speaking). The detailed solution to this question can be found in the attachment below. Thank you!
maximum speed of cheetah is

speed of gazelle is given as

Now the relative speed of Cheetah with respect to Gazelle


now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as

so by rearranging the terms we can say


so above is the relation between all given variable
Answer:
Only option A is correct
Explanation:
From the concept of Doppler effect, only speed matters. Thus, the faster a vehicle is moving, the closer together the sound waves get compressed and the higher the frequency. For example, for a very fast vehicle traveling at the speed of sound; the compressions are all right on top of each other. Thus, faster speed means closer compressions and higher frequencies. Hence, option only option A must be true because X is a higher frequency and so it must be going faster. The distance to the person will affect the volume but will not the pitch so Option B is not correct. Option C too is not correct because It doesn’t matter whether you are speeding up or slowing down, it only matters who is going faster. For example, from option c concept, if truck X was going 10 m/h and speeding up while truck Y was going 50 mph and slowing down, it would not meet the requirement that X has a higher frequency because only actual speed matters, not what is happening to that speed. Thus only option A is the correct answer