1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
9

A pelican flying along a horizontal path drops a fish from a height of 4.7 m. The fish travels 9.3 m horizontally before it hits

the water below. What was the pelican’s initial speed? The acceleration of gravity is 9.81 m/s 2 . Answer in units of m/s. If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?
Physics
1 answer:
slavikrds [6]3 years ago
8 0

Answer:

(A) 9.5 m/s

(B) 5.225 m

Explanation:

vertical height (h) = 4.7 m

horizontal distance (d) = 9.3 m

acceleration due to gravity (g) = 9.8 m/s^{2}

initial speed of the fish (u) = 0 m/s

(A) what is the pelicans initial speed ?

  • lets first calculate the time it took the fish to fall

s = ut + (\frac{1}{2}) at^{2}

since u = 0

s =  (\frac{1}{2}) at^{2}

t = \sqrt{\frac{2s}{a} }

where a = acceleration due to gravity and s = vertical height

t = \sqrt{\frac{2 x 4.7 }{9.8} } = 0.98 s

  • pelicans initial speed = speed of the fish

speed of the fish = distance / time = 9.3 / 0.98 = 9.5 m/s

initial speed of the pelican = 9.5 m/s

(B) If the pelican was traveling at the same speed but was only 1.5 m above the water, how far would the fish travel horizontally before hitting the water below?

vertical height = 1.5 m

pelican's speed = 9.5 m/s

  • lets also calculate the time it will take the fish to fall

s = ut + (\frac{1}{2}) at^{2}

since u = 0

s =  (\frac{1}{2}) at^{2}

t = \sqrt{\frac{2s}{a} }

where a = acceleration due to gravity and s = vertical height

t = \sqrt{\frac{2 x 1.5 }{9.8} } = 0.55 s

 

distance traveled by the fish = speed x time = 9.5 x 0.55 = 5.225 m

You might be interested in
Anthony is deciding between different savings accounts at his bank. He has four options, based on how frequently interest compou
77julia77 [94]
So annual compounding means that the account is compound once a year, semi-annual is 2 times a year, monthly compounded is every month (so 12 times a year). and daily is every day (so 365 times a year). If he wants the best rate of return on his interest, or the most money, he should choose daily compounding because his funds are being compounded every day. 
5 0
3 years ago
A very elastic rubber ball is dropped from a certain height and hits the floor with a (2pts) downward speed v. Since it is so el
artcher [175]

Answer:

3.True. The magnitude of momentum is the same

Explanation:

Let's propose the solution of the problem

The initial moment is

                     p₀ = m v

The final moment

                     p_{f} = m (-v)

 

                  p₀ = - p_{f}

Now we can review the claims

1. False. We see that the moment module is the same, but its direction changes

2. False. The impulse is a vector

3.True. The magnitude of momentum is the same

7 0
3 years ago
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10
Alexeev081 [22]

Answer:

a) c=1822.3214\ J.kg^{-1}.K^{-1}

b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c) The material is peat, possibly.

d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.

Explanation:

Given:

  • mass of aluminium, m_a=0.1\ kg
  • mass of water, m_w=0.25\ kg
  • initial temperature of the system, T_i=10^{\circ}C
  • mass of copper block, m_c=0.1\ kg
  • temperature of copper block, T_c=50^{\circ}C
  • mass of the other block, m=0.07\ kg
  • temperature of the other block, T=100^{\circ}C
  • final equilibrium temperature, T_f=20^{\circ}C

We have,

specific heat of aluminium, c_a=910\ J.kg^{-1}.K^{-1}

specific heat of copper, c_c=390\ J.kg^{-1}.K^{-1}

specific heat of water, c_w=4186\ J.kg^{-1}.K^{-1}

Using the heat energy conservation equation.

The heat absorbed by the system of the calorie-meter to reach the final temperature.

Q_{in}=m_a.c_a.(T_f-T_i)+m_w.c_w.(T_f-T_i)

Q_{in}=0.1\times 910\times (20-10)+0.25\times 4186\times (20-10)

Q_{in}=11375\ J

The heat released by the blocks when dipped into water:

Q_{out}=m_c.c_c.(T_c-T_f)+m.c.(T-T_f)

where

c= specific heat of the unknown material

For the conservation of energy : Q_{in}=Q_{out}

so,

11375=0.1\times 390\times (50-20)+0.07\times c\times (100-20)

c=1822.3214\ J.kg^{-1}.K^{-1}

b)

This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).

c)

The material is peat, possibly.

d)

The material cannot be ice because ice doesn't exists at a temperature of 100°C.

7 0
3 years ago
Part 2: Design your own circuit (40 points)
Mrac [35]

Answer:

"YOUR OWN!"

Explanation:

8 0
3 years ago
DONT ANSWER WITH A LINK PLEASE I NEED AN ANSWER FROM SOMEONE!
rjkz [21]
At 4 m/s?

How do the two kinetic energies compare to one another? QUADRUPLES !

#3 What is the kinetic energy of a 2,000 kg bus that is moving at 30 m/s?

Potential energy
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the frequency of infrared light of 1.0 x 10-4 m wavelength?
    10·1 answer
  • What is the average velocity in the time interval 3 to 4 seconds
    13·2 answers
  • Urbanization is the cause of "urban heat island" a condition that could be described as global warming caused by pollutants of a
    15·1 answer
  • In describing a vector, what must you describe besides the magnitude?
    10·1 answer
  • A double star has two components of equal brightness, each with a magnitude of 8.34. if these stars are so close together that t
    5·1 answer
  • After touchdown a fighter jet passes a marker on the runway at an instantaneous speed of 100 m/s and constant negative accelerat
    5·1 answer
  • Light from the sun travels in electromagnetic waves. Which of these statements describe electromagnetic waves?
    11·1 answer
  • The graph shows the amplitude of a pausing wave over time in secondo (o).
    13·2 answers
  • An electric motor transforms potential energy into mechanical energy.<br>True or false ​
    7·2 answers
  • The following coplanar forces pull on a ring 200N at 30 degrees and 500N at 80 degrees and 300N at 240 degrees and an unknown fo
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!