The period of a pendulum is given by

where L is the pendulum length and g is the gravitational acceleration.
We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:

where the labels m and e refer to "Moon" and "Earth".
Since the gravitational acceleration on Earth is

while on the Moon is

, the ratio between the period on the Moon and on Earth is
Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them. Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them.
Answer:
Explanation:
a ) work done by gravitational force
= mg sinθ ( d + .21)
Potential energy stored in compressed spring
= 1/2 k x²
= .5 x 431 x ( .21 )²
= 9.5
According to conservation of energy
mg sinθ ( d + .21) = 9.5
3.2 x 9.8 x sin 30( d + .21 ) = 9.5
d = 40 cm
b )
As long as mg sin30 is greater than kx ( restoring force ) , there will be acceleration in the block.
mg sin30 = kx
3.2 x 9.8 x .5 = 431 x
x = 3.63 cm
When there is compression of 3.63 cm in the spring , block will have maximum velocity. there after its speed will start decreasing.
T
Answer:
the velocity is a second final to initial velocity of 39