Answer:
C) It has a constant average kinetic energy
Explanation:
The average kinetic energy of the particles in a gas is directly proportional to the temperature of the gas, according to the equation.
k is the Boltzmann's constant
T is the absolute temperature of the gas
Therefore, temperature of a gas is a measure of the average kinetic energy of the particles.
In this problem, we are told that the gas is at constant temperature (and volume): therefore, according to the previous equation, this means that the average kinetic energy is also constant.
So 6.02*10^22 is avogadro constant, which is the amount of atoms in one mole. If you look Xenon up in the periodic table you will find it's mass given <span>131,293, which is grams per 1 mole.
</span>
The reaction between hydrogen (H2) and fluorine (F2) is given below,
H2 + F2 ---> 2HF
One mole of both hydrogen and fluorine yields to 2 moles of hydrogen fluoride. This can also be expressed as, 2 grams of hydrogen and 38 grams of fluorine will form 40 grams of hydrogen fluoride. From the given, only 20 grams of HF is formed with 19 g of it being fluorine. Thus, the percentage fluorine of the compound formed is 95%.
Starfish, they break off a part of themselves and then it grows into another starfish, that’s how they reproduce asexually :)
The answer is Ka = 1.00x10^-10.
Solution:
When given the pH value of the solution equal to 11, we can compute for pOH as
pOH = 14 - pH = 14 - 11.00 = 3.00
We solve for the concentration of OH- using the equation
[OH-] = 10^-pOH = 10^-3 = x
Considering the sodium salt NaA in water, we have the equation
NaA → Na+ + A-
hence, [A-] = 0.0100 M
Since HA is a weak acid, then A- must be the conjugate base and we can set up an ICE table for the reaction
A- + H2O ⇌ HA + OH-
Initial 0.0100 0 0
Change -x +x +x
Equilibrium 0.0100-x x x
We can now calculate the Kb for A-:
Kb = [HA][OH-] / [A-]
= x<span>²</span> / 0.0100-x
Approximating that x is negligible compared to 0.0100 simplifies the equation to
Kb = (10^-3)² / 0.0100 = 0.000100 = 1.00x10^-4
We can finally calculate the Ka for HA from the Kb, since we know that Kw = Ka*Kb = 1.0 x 10^-14:
Ka = Kw / Kb
= 1.00x10^-14 / 1.00x10^-4
= 1.00x10^-10