Answer:
D
Explanation:
A: not true. You could have cement floors and still receive radio/TV
B: not true. Very little of the waves are absorbed by the walls.
C: not true. You can receive radio/TV if there isn't a carpet in the entire house.
D: Dis the answer. Walls don't absorb the incoming waves or not much of them
Answer:
Away from the water environment; in the interior portion of the molecule. Hope this helps!
Answer: The heat required to melt 25.0 g of ice at
is 8350 Joules
Explanation:
Heat of Fusion tells us how much energy is needed to convert 1g of a solid to a liquid at the same temperature.
Q = Heat absorbed = ?
m = mass of ice = 25.0 g
L = Latent heat of fusion of ice = 334 J/g
Putting in the values, we get:
Thus heat required to melt 25.0 g of ice at
is 8350 Joules
Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.