Option A is the correct answer
Answer:
Joule-Thomson coefficient for an ideal gas:

Explanation:
Joule-Thomson coefficient can be defined as change of temperature with respect to pressure at constant enthalpy.
Thus,
![\mu_{J.T} = \left [\frac{\partial T}{\partial P} \right ]_H](https://tex.z-dn.net/?f=%5Cmu_%7BJ.T%7D%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%20%5Cright%20%5D_H)
Also,


![dH= \left [\frac{\partial H}{\partial T}\right ]_P dT + \left [\frac{\partial H}{\partial P}\right ]_T dT](https://tex.z-dn.net/?f=dH%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20T%7D%5Cright%20%5D_P%20dT%20%2B%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20dT)
Also,
is defined as:
![C_p = \left [\frac{\partial H}{\partial T}\right ]_P](https://tex.z-dn.net/?f=C_p%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20T%7D%5Cright%20%5D_P)

![dH= C_p dT + \left [\frac{\partial H}{\partial P}\right ]_T dT](https://tex.z-dn.net/?f=dH%3D%20C_p%20dT%20%2B%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20dT)
Acoording to defination, the ethalpy is constant which means 

![\left [\frac{\partial H}{\partial P}\right ]_T = -C_p\times \left [\frac{\partial T}{\partial P}\right ]_H](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D%20-C_p%5Ctimes%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_H)

![\mu_{J.T} = \left [\frac{\partial T}{\partial P}\right ]_H](https://tex.z-dn.net/?f=%5Cmu_%7BJ.T%7D%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_H)

![\left [\frac{\partial H}{\partial P}\right ]_T =-\mu_{J.T}\times C_p](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D-%5Cmu_%7BJ.T%7D%5Ctimes%20C_p)
For an ideal gas,
![\left [\frac{\partial H}{\partial P}\right ]_T = 0](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D%200)
So,

Thus,
≠0. So,

The answer is c) Electrical energy
Answer:

Explanation:
Using the Ideal Gas Law we have
and the number of moles n could be expressed as
, where m is the mass and M is the molar mass.
Now, replacing the number of moles in the equation for the ideal gass law:

If we pass the V to divide:

As the density is expressed as
, we have:

Solving for the density:

Then we need to convert the units to the S.I.:






Finally we replace the values:



