Answer:
t = 1.098*RC
Explanation:
In order to calculate the time that the capacitor takes to reach 2/3 of its maximum charge, you use the following formula for the charge of the capacitor:
(1)
Qmax: maximum charge capacity of the capacitor
t: time
R: resistor of the circuit
C: capacitance of the circuit
When the capacitor has 2/3 of its maximum charge, you have that
Q=(2/3)Qmax
You replace the previous expression for Q in the equation (1), and use properties of logarithms to solve for t:
![Q=\frac{2}{3}Q_{max}=Q_{max}[1-e^{-\frac{t}{RC}}]\\\\\frac{2}{3}=1-e^{-\frac{t}{RC}}\\\\e^{-\frac{t}{RC}}=\frac{1}{3}\\\\-\frac{t}{RC}=ln(\frac{1}{3})\\\\t=-RCln(\frac{1}{3})=1.098RC](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B2%7D%7B3%7DQ_%7Bmax%7D%3DQ_%7Bmax%7D%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%5D%5C%5C%5C%5C%5Cfrac%7B2%7D%7B3%7D%3D1-e%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%5C%5C%5C%5Ce%5E%7B-%5Cfrac%7Bt%7D%7BRC%7D%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C-%5Cfrac%7Bt%7D%7BRC%7D%3Dln%28%5Cfrac%7B1%7D%7B3%7D%29%5C%5C%5C%5Ct%3D-RCln%28%5Cfrac%7B1%7D%7B3%7D%29%3D1.098RC)
The charge in the capacitor reaches 2/3 of its maximum charge in a time equal to 1.098RC
I believe (D) during the second half of the trampoline's movement downward and the first half of the trampoline's movement upward.
But this question is hard to answer. So it can also be C.
One does not simply should you do you should
The shadow forms on the first surface away from the shuttle in the direction opposite the sun.