A. They are the same
<h3>Further explanation</h3>
Given
C3H6 and C4H8
Required
The percent compositions
Solution
%C = 3.12/42 x 100% = 85.71%
%H = 6.1/42 x 1005 = 14.29%
C₄H₈(MW=56 g/mol)
%C = 4.12/56 x 100% = 85.71%
%H = 8.1/56 x 100%=14.29%
So they are the same, because mol ratio of C and H in both compounds is the same, 1: 2
Answer:
If your lab has litmus paper, you can use it to determine your solution's pH. When you place a drop of a solution on the litmus paper, the paper changes color based on the pH of the solution. Once the color changes, you can compare it to the color chart on the paper's package to find the pH.
Explanation:
A solution's pH will be a number between 0 and 14. A solution with a pH of 7 is classified as neutral. If the pH is lower than 7, the solution is acidic. When pH is higher than 7, the solution is basic. These numbers describe the concentration of hydrogen ions in the solution and increase on a negative logarithmic scale.
For example, If Solution A has a pH of 3 and Solution B has a pH of 1, then Solution B has 100 times as many hydrogen ions than A and is therefore 100 times more acidic.
Answer:
Explanation:
Bisulphate ion is a weak acid as it can form hydronium ion in water .
HSO₄⁻ + H₂O ⇄ SO₄⁻² + H₃O⁺
The equilibrium constant of this reaction is very small , hence bisulphate ion is very weak acid.
Answer:
8.70 liters
Explanation:
First we <u>convert 36.12 g of AI₂O₃ into moles</u>, using its <em>molar mass</em>:
- 36.12 g ÷ 101.96 g/mol = 0.354 mol AI₂O₃
Then we <u>convert AI₂O₃ moles into O₂ moles</u>, using the stoichiometric coefficients of the reaction:
- 0.354 mol AI₂O₃ *
= 0.531 mol O₂
We can now use the <em>PV=nRT equation</em> to <u>calculate the volume</u>, V:
- 1.4 atm * V = 0.531 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 280.0 K