Answer:
Train A - 50 miles per hour
train B - 30 miles per hour
Step-by-step explanation:
Let x mph be the speed of the train B, then the speed of the train A is (x+20) mph.
In 3 hours,
- train A travels 3(x+20) miles
- train B travels 3x miles
In total, they covered the distance of 240 miles, so
![3(x+20)+3x=240\ \ \ \text{[Divide by 3]}\\ \\x+20+x=80\\ \\2x=80-20\\ \\2x=60\\ \\x=30\ mph\\ \\x+20=30+20=50\ mph](https://tex.z-dn.net/?f=3%28x%2B20%29%2B3x%3D240%5C%20%5C%20%5C%20%5Ctext%7B%5BDivide%20by%203%5D%7D%5C%5C%20%5C%5Cx%2B20%2Bx%3D80%5C%5C%20%5C%5C2x%3D80-20%5C%5C%20%5C%5C2x%3D60%5C%5C%20%5C%5Cx%3D30%5C%20mph%5C%5C%20%5C%5Cx%2B20%3D30%2B20%3D50%5C%20mph)
So to solve for y, subtract 108 from each side.
The equation becomes -y=126
Since you don't want y to be negative then divide each side by -1 this will flip all of the signs (positives become negative and vice versa) without changing the number.
So the equation is now y= -126
The number of basketball that will fill up the entire office is <u>approximately 16,615.</u>
<em><u>Recall:</u></em>
Volume of a spherical shape = 
Volume of a rectangular prism = 
<em><u>Given:</u></em>
Diameter of basketball = 9.5 in.
Radius of the ball = 1/2 of 9.5 = 4.75 in.
Radius of the ball in ft = 0.4 ft (12 inches = 1 ft)
Dimension of the office (rectangular prism) = 20 ft by 18 ft by 12 ft
- First, find the volume of the basketball:
Volume of ball = 
Volume of basketball = 
- Convert to


<em>Therefore,</em>
- Volume of basketball =

- Find the volume of the office (rectangular prism):
Volume of the office = 
- Number of basket ball that will fill the office = Volume of office / volume of basketball
Number of basket ball that will fill the office = 
Therefore, it will take approximately <u>16,615 balls</u><u> to fill up the entire office</u>.
Learn more here:
brainly.com/question/16098833
15,840 feet. best of luck mate