Answer:D
Step-by-step explanation:
B.) a=-5.7
1.6(a)=-9.12
(a)=(-9.12)/(1.6)
a=-5.7
Answer:
D. Minimum at (3, 7)
Step-by-step explanation:
We can add and subtract the square of half the x-coefficient:
y = x^2 -6x +(-6/2)^2 +16 -(-6/2)^2
y = (x -3)^2 +7 . . . . . simplify to vertex form
Comparing this to the vertex for for vertex (h, k) ...
y = (x -h)^2 +k
We find the vertex to be ...
(3, 7) . . . . vertex
The coefficient of x^2 is positive (+1), so the parabola opens upward and the vertex is a minimum.
1. 200 Parsecs, 652.312 Light years 2. 8 Parsecs, 26.09248 Light years ; Use this formula, p=1/P(parallax), to solve the equation. Then multiply 3.26156 (light years per parsec) by the number of parsecs.
1. p= 1/0.005 = 200*3.26156 = 652.312
200 Parsecs, 652.312 Light years
2. p=1/0.125 = 8*3.26156 = 26.09248
8 Parsecs, 26.09248 Light years