1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
2 years ago
9

What is the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b?

Physics
1 answer:
xeze [42]2 years ago
7 0

The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

<h3>Change in energy level of the electron</h3>

When photons jump from a higher energy level to a lower level, they emit or radiate energy.

The change in energy level of the electrons is calculated as follows;

ΔE = Eb - Ef

ΔE = -2.68 eV - (-5.74 eV)

ΔE = 3.06 eV

Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

Learn more about energy level here: brainly.com/question/14287666

#SPJ1

You might be interested in
How many electrons do hydrogeyn have?
zubka84 [21]
A hydrogen<span> atom contains 1 </span>electron<span>, 1 proton, and no neutrons based on the Periodic Table. The isotopes of the </span>hydrogen<span> atoms however, do contain neutrons.</span>
6 0
3 years ago
A solid sphere of radius 40.0cm has a total positive charge of 26.0μC uniformly distributed throughout its volume. Calculate the
Rudiy27

The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C

R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Q\;(\text{total charge of the solid sphere})=(26\;\mathrm{\mu C})\left(\dfrac{1\;\mathrm{C}}{10^6\;\mathrm{\mu C}} \right)={26\times 10^{-6}\;\mathrm{C}}

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

E=\dfrac{Q}{4\pi\epsilon_0 r^2}

Substitute numerical values:

E&=\dfrac{24\times 10^{-6}}{4\pi (8.8542\times 10^{-12})(0.6)}\\ &={6.49\times 10^5\;\mathrm{N/C}\;\text{directed radially outward}}}

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.

As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).

Learn more about Gaussian sphere here:

brainly.com/question/2004529

#SPJ4

6 0
1 year ago
What happens to the force of gravity between two masses if one mass is decreased?
Andrews [41]
<span>B. It stays the same</span>
7 0
3 years ago
Read 2 more answers
Use the dimensional analysis and check the correctness of given equation:-<br> PV= nRT
Harman [31]

PV=nRT

Here

P=Pressure

V=Volume

n=Molarity

R=universal gas constant

T=Temperature.

LHS

\\ \tt\bull\leadsto PV

\\ \tt\bull\leadsto [ML^2T^{-2}][M^0L^3T^0]

\\ \tt\bull\leadsto [ML^5T^{-2}]

RHS

\\ \tt\bull\leadsto nRT

\\ \tt\bull\leadsto [M^0L^{3}T^0][M^1 L^2 T^{-2}K^{-1}][M^0L^0T^0K^1]

\\ \tt\bull\leadsto [ML^5T^{-2}]

LHS=RHS

hence verified

6 0
3 years ago
An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
gizmo_the_mogwai [7]

Answer:

Explanation:

First of all we shall find the velocity at equilibrium point of mass 1.2 kg .

It will be ω A , where ω is angular frequency and A is amplitude .

ω = √ ( k / m )

= √ (170 / 1.2 )

= 11.90 rad /s

amplitude A = .045 m

velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s

= .5355 m /s

At middle point , no force acts so we can apply law of conservation of momentum

m₁ v₁ = ( m₁ + m₂ ) v

1.2 x .5355 = ( 1.2 + .48 ) x v

v = .3825 m /s

= 38.25 cm /s

Let new amplitude be A₁ .

1/2 m v² = 1/2 k A₁²

( 1.2 + .48 ) x v² = 170 x A₁²

( 1.2 + .48 ) x .3825² = 170 x A₁²

A₁ = .0379 m

New amplitude is .0379 m

7 0
3 years ago
Other questions:
  • Which of the following statements are true about measurements and units?
    13·1 answer
  • 20. A car battery with a 12-V emf and an internal resistance of 0.050 Ω is being charged with a current of 60 A. Note that in th
    10·1 answer
  • Wood iron glass aluminum and paper which substances have high thermal conductivity
    13·2 answers
  • Explain the law of conservation of mass and how it applies to balancing chemical equations
    13·1 answer
  • Why can some electric appliances be immersed in water without damage?
    7·2 answers
  • If the toy car moved with a velocity of 2m/s to the south for 8s; what is the total displacement of the toy car?
    9·1 answer
  • Joint replacement are often made of the element titanium. Which type of matter is titanium
    11·2 answers
  • Kinetic Energy HELP! Brainly included
    14·1 answer
  • HELPPP PLEASE URGENT
    9·1 answer
  • How do I find force?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!