1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
3 years ago
9

What living things began to increase in numbers following this mass extinction?

Physics
1 answer:
RoseWind [281]3 years ago
8 0

pigsExplanation: population

You might be interested in
At what speed relative to the ship does she recoil toward the spaceship?
Andre45 [30]
She recoil at a high speed than a low
7 0
3 years ago
Batman (95kg) is standing on top of a 50m high building looking out over the city of Gotham. Given that he uses the potential en
Oksanka [162]

Answer:

47 kJoules (kJ)

Explanation:

Potential enegy on Earth is given by the relationship:

P.E. = mgh, where m is mass, g is the acceleration due to Earth's gravity, and h is height. Since we are given metric values, we will look for an answer that is consistent with Joules, the metric measure of energy. 1 Joule is defined as 1 kg*m^2/s^2, so we wnat units of kg, m, and sec.

We are given:

m = 95kg

h = 50 meters

Earth's gravity, g is 9.8 m/s^2

Enter the data:

P.E. = mgh

P.E. = (95kg)(9.8m/s^2)(50m)

P.E. = 46550 kg*m^2/s^2 or 46550 Joules(J)

Since we only have 2 sig figs, and since 1kJ =- 1000J

We can state the potential energy is 47kJ.

Spiderman has 47kJ of potential energy for the start of any dive back to Earth. [He needed that same amount of energy to reach that height, but we don't know from where it came. A jump, helicopter, beamed up by Scotty, or tossed up by Doctor Octopus.]

3 0
1 year ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
2 years ago
All objects near the earths surface - regardless of size and weight - hhave the same force of gravityvacting on them.
masya89 [10]

Answer:

B. False

Explanation:

Not all objects near the earths surface - regardless of size and weight - have the same force of gravity on them.

4 0
3 years ago
A 38.2 kg wagon is towed up a hill inclined at 17.5 ◦ with respect to the horizontal. The tow rope is parallel to the incline an
Tema [17]

Answer:

v = 8.57 m/s

Explanation:

As we know that the wagon is pulled up by string system

So the net force on the wagon along the inclined is due to tension in the rope and component of weight along the inclined plane

So as per work energy theorem we know that

work done by tension force + work done by force of gravity = change in kinetic energy

F_t . d - (mgsin\theta)(d) = \frac{1}{2}mv^2 - 0

so we have

F_t = 129 N

\theta = 17.5^o

m = 38.2 kg

d = 85.4 m

so now we have

129(85.4) - (38.2)9.8sin17.5 (85.4) = \frac{1}{2}(38.2) v^2

v = 8.57 m/s

7 0
3 years ago
Other questions:
  • Anyone good with this type of vocabulary. I really need to get this done to study.
    9·1 answer
  • Two students, Student 1 and Student 2, did a hands-on mining exercise with cookies to compare the total cost of mining in two di
    13·1 answer
  • An apple is pushed across a table with a velocity of 3.74 m/s rolls too far and falls 0.89
    6·1 answer
  • Dissolving sodium chloride will
    8·1 answer
  • An ice skater is spinning at 6.00 rev/s with his moment of inertia being 0.400 kg/m2. Calculate his new moment of inertia if he
    10·1 answer
  • A rubber ball with a mass of 0.30 kg is dropped onto a steel plate. The ball's velocity just before impact is 4.5 m/s and just a
    7·1 answer
  • __________ is a severe condition that occurs from extreme exposure to the sun.
    8·2 answers
  • n hydrogen, the transition from level 1 to level 2 has a rest wavelength of 121.6 nm. Suppose you see this line at a wavelength
    7·1 answer
  • When finding net force, why must you know the directions of the forces acting on an object?
    8·1 answer
  • The weight of the windsurfer is 700 newtons. Calculate the moment exerted by the windsurfer on the sailboat ​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!