Wouldn't it be neat if an electron falling closer to the nucleus ... emitting a
photon ... actually gave out more energy than it needed to climb to its original
energy level by absorbing a photon ! If there were some miraculous substance
that could do that, we'd have it made.
All we'd need is a pile of it in our basement, with a bright light bulb over the pile,
connected to a tiny hand-crank generator.
Whenever we wanted some energy, like for cooking or heating the house, we'd
switch the light bulb on, point it towards the pile, and give the little generator a
little shove. It wouldn't take much to git 'er going.
The atoms in the pile would absorb some photons, raising their electrons to higher
energy levels. Then the electrons would fall back down to lower energy levels,
releasing more energy than they needed to climb up. We could take that energy,
use some of it to keep the light bulb shining on the pile, and use the extra to heat
the house or run the dishwasher.
The energy an electron absorbs when it climbs to a higher energy level (forming
the atom's absorption spectrum) is precisely identical to the energy it emits when
it falls back to its original level (creating the atom's emission spectrum).
Energy that wasn't either there in the atom to begin with or else pumped
into it from somewhere can't be created there.
You get what you pay for, or, as my grandfather used to say, "For nothing
you get nothing."
Answer:
The height of the building is 8,302.5 m
Explanation:
Given;
velocity of the projectile, u = 36 m/s
time of motion, t = 45 s
Let the upward direction of the bullet be negative,
The height of the building is calculated as;

In order to form a real image using a concave mirror, the object must be placed beyond the center of curvature of the mirror. Therefore, the object must be further from the mirror than the focal point. The image that will form will be real, but it will also be inverted and its magnification will be less than 1, meaning it will be smaller than the actual object.
Answer:
The only difference between radio waves, visible light and gamma rays is the energy of the photons.'
Bothrays have photons, but in radio waves they are weaker.