Answer:
The difference between the two is:
is the Orbital Occupancy
is the Orbital Filling Order
Both are correct, I don't think your teacher will be so nit-picky to care.
<span>The effects of acid rain include:
d. All the above
</span>
Answer :
AgI should precipitate first.
The concentration of
when CuI just begins to precipitate is, 
Percent of
remains is, 0.0076 %
Explanation :
for CuI is 
for AgI is 
As we know that these two salts would both dissociate in the same way. So, we can say that as the Ksp value of AgI has a smaller than CuI then AgI should precipitate first.
Now we have to calculate the concentration of iodide ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Cu^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCu%5E%2B%5D%5BI%5E-%5D)
![1\times 10^{-12}=0.0079\times [I^-]](https://tex.z-dn.net/?f=1%5Ctimes%2010%5E%7B-12%7D%3D0.0079%5Ctimes%20%5BI%5E-%5D)
![[I^-]=1.25\times 10^{-10}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.25%5Ctimes%2010%5E%7B-10%7DM)
Now we have to calculate the concentration of silver ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ag^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BI%5E-%5D)
![8.3\times 10^{-17}=[Ag^+]\times 1.25\times 10^{-10}M](https://tex.z-dn.net/?f=8.3%5Ctimes%2010%5E%7B-17%7D%3D%5BAg%5E%2B%5D%5Ctimes%201.25%5Ctimes%2010%5E%7B-10%7DM)
![[Ag^+]=6.64\times 10^{-7}M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%3D6.64%5Ctimes%2010%5E%7B-7%7DM)
Now we have to calculate the percent of
remains in solution at this point.
Percent of
remains = 
Percent of
remains = 0.0076 %
Answer:
125000
Explanation:
Because it is halved and halved again.
Answer:

Explanation:
<u>Convert Atoms to Moles</u>
The first step is to convert atoms to moles. 1 mole of every substance has the same number of particles: 6.022 ×10²³ or Avogadro's Number. The type of particle can be different, in this case it is atoms of silver. Let's create a ratio using this information.

We are trying to find the mass of 8.23 ×10²³ silver atoms, so we multiply by that number.

Flip the ratio so the atoms of silver cancel. The ratio is equivalent, but places the other value with units "atoms Ag" in the denominator.


Condense into one fraction.


<u>Convert Moles to Grams</u>
The next step is to convert the moles to grams. This uses the molar mass, which is equivalent to the atomic mass on the Periodic Table, but the units are grams per mole.
Let's make another ratio using this information.

Multiply by the number of moles we calculated.

The moles of silver cancel out.



<u>Round</u>
The original measurement of atoms has 3 significant figures, so our answer must have the same. For the number we calculated, that is the ones place.
The 4 in the tenths place tells us to leave the 7 in the ones place.

8.23 ×10²³ silver atoms are equal to approximately <u>147 grams.</u>