Answer is: <span>pH of the water is 8.33, this is basic solution (pH is greater than seven).
</span>[H₃O+] = 4.60·10⁻⁹ M; equilibrium concentration of hydronium ion.
pH = -log[H₃<span>O+].
</span>pH = -log(4.60·10⁻⁹ M).
pH = 8.33.
pH (potential of
hydrogen) is a numeric scale used to specify the acidity or basicity <span>an aqueous
solution.
</span><span>
</span>
Answer:
Option D is the correct answer
Explanation:
There are three hydrogen bonds formed between Guanine and Cytosine base.
The first hydrogen bond is formed between the oxygen atom on Carbon-6 (C-6) of guanine, and one of the hydrogen atoms attached to the Nitrogen atom (i.e the one of the hydrogen atoms in the amino group) on the Carbon-4 (C-4)of the cytosine base.
The second hydrogen bond is formed between the hydrogen atom on Nitrogen-1 (N-1) of the guanine base and Nitrogen-3 (N-3) of the cytosine base.
The third hydrogen bond exist between one of the hydrogen atoms in the amino group attached to the second Carbon (C-2) of the guanine base, and the oxygen atom attached to the second Carbon (C-2) of the cytosine base.
Answer:
The concentration of the CaBr2 solution is 96 µmol/L
Explanation:
<u>Step 1:</u> Data given
Moles of Calciumbromide (CaBr2) = 4.81 µmol
Volume of the flask = 50.0 mL = 0.05 L
<u>Step 2:</u> Calculate the concentration of Calciumbromide
Concentration CaBr2 = moles CaBr2 / volume
Concentration CaBr2 = 4.81 µmol / 0.05 L
Concentration CaBr2 = 96.2 µmol /L = 96.2 µM
The concentration of the CaBr2 solution is 96 µmol/L
Answer:
20.0
Explanation:
NaOH = (25.0) (0.100m) \ 0.125M = 20.0mL
Answer:
A.
Explanation:
An equation with the equal amount and proportion of atoms of each element on both sides of the reaction is commonly referred to as a balanced chemical equation.
The law of conservation of matter asserts that no observable and empirical change in the amount of matter occurs within a conventional chemical process. As a result, each element in the product would have the same equal amount or numbers of atoms as the reactants.