The average atomic mass of the imaginary element : 47.255 amu
<h3>Further explanation </h3>
The elements in nature have several types of isotopes
Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
Mass atom X = mass isotope 1 . % + mass isotope 2.% ..
isotope E-47 47.011 amu, 87.34%
isotope E-48 48.008 amu, 6.895
isotope E-49 50.009 amu, 5.77%
The average atomic mass :

Answer:
t = 7.58 * 10¹⁹ seconds
Explanation:
First order rate constant is given as,
k = (2.303
/t) log [A₀]
/[Aₙ]
where [A₀] is the initial concentraion of the reactant; [Aₙ] is the concentration of the reactant at time, <em>t</em>
[A₀] = 615 calories;
[Aₙ] = 615 - 480 = 135 calories
k = 2.00 * 10⁻²⁰ sec⁻¹
substituting the values in the equation of the rate constant;
2.00 * 10⁻²⁰ sec⁻¹ = (2.303/t) log (615/135)
(2.00 * 10⁻²⁰ sec⁻¹) / log (615/135) = (2.303/t)
t = 2.303 / 3.037 * 10⁻²⁰
t = 7.58 * 10¹⁹ seconds
Answer:
47.01 g/mol is molar mass
Answer:
Option A is not true
Explanation:
Could you please follow me and mark me as the brainliest answer
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol