Answer:
B) x^2+6x+8
Explanation:
x-4 | x^3+2x^2-16x-32
- x^3-4x^2 <-- (x-4)(x^2)
_________________
6x^2-16x-32
- 6x^2-24x <-- (x-4)(6x)
_________________
8x-32
- 8x-32 <- (x-4)(8)
___________________________
0 | x^2+6x+8
This means the answer is B) x^2+6x+8
The pressure exerted by the block on the table is given by:

where W is the weight of the box, and A is the bottom surface area of the box.
The weight of the box is: 
Substituting into the first equation, we find the pressure:

Answer:
0.777m
Explanation:
The sound wave has a wavelength of 0.773m.
Explanation:
To solve this problem we have to use the wave equation that is given below:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
Hope this helps, Mark as brainliest if u want
Wavelength = (speed) / (frequency)
Speed of radio = speed of light.
The
two precipitation peaks in Mbandaka during March to April and September to
November is due to the intertropical convergence zone.
Intertropical
convergence zone is a narrow zone located near the equator. It is where the
northern and southern air masses intersect which results to low atmospheric
pressure. Due to the intertropical convergence zone’s meeting of air masses,
often times the air pressure are lower which will results to colder air, or
even rainfall during the period of March to April, and most especially
September to November in Mbandaka.
<span>Since
Mbandaka is located at the cented of Tumba-Ngiri-Maindombe area, which is named
as a Wetland of International importance, there is really a bigger chance that
this place experience above 60mm precipitation in a year, temperatures averaging
from 23 – 26 degrees Celsius.</span>