Your pancreas makes a digestive juice that has enzymes that break down carbohydrates, fats, and proteins. The pancreas delivers the digestive juice to the small intestine through small tubes called ducts. Liver. Your liver makes a digestive juice called bile that helps digest fats and some vitamins.
Answer:
F = 2.30 10⁴ N
Explanation:
The force required to link two gates must be equal to or greater than the electrostatic force of repulsion, because the protons have equal charges.
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁹ N m² / C²
In this case the proton charge is 1.6 10⁻¹⁹ C and the distance between them is approximately the diameter of the core r = 10⁻¹⁵ m
Let's calculate
F = 8.99 10⁹ (1.6 10⁻¹⁹)² / (10⁻¹⁵)²
F = 2.30 10⁴ N
The bond strength must be equal to or greater than this value
Answer:
ΔP = 14.5 Ns
I = 14.5 Ns
ΔF = 5.8 x 10³ N = 5.8 KN
Explanation:
The mass of the ball is given as 0.145 kg in the complete question. So, the change in momentum will be:
ΔP = mv₂ - mv₁
ΔP = m(v₂ - v₁)
where,
ΔP = Change in Momentum = ?
m = mass of ball = 0.145 kg
v₂ = velocity of batted ball = 55.5 m/s
v₁ = velocity of pitched ball = - 44.5 m/s (due to opposite direction)
Therefore,
ΔP = (0.145 kg)(55.5 m/s + 44.5 m/s)
<u>ΔP = 14.5 Ns</u>
The impulse applied to a body is equal to the change in its momentum. Therefore,
Impulse = I = ΔP
<u>I = 14.5 Ns</u>
the average force can be found as:
I = ΔF*t
ΔF = I/t
where,
ΔF = Average Force = ?
t = time of contact = 2.5 ms = 2.5 x 10⁻³ s
Therefore,
ΔF = 14.5 N.s/(2.5 x 10⁻³ s)
<u>ΔF = 5.8 x 10³ N = 5.8 KN</u>
It would be the first one
We have vector 
Therefore,
x component = 17.9 * cos80 degree = 3.108
y component = 17.9 * sin80 degrees = 17.628
<h3>What is a vector?</h3>
An object with both magnitude and direction is referred to be a vector. A vector can be visualized geometrically as a directed line segment, with an arrow pointing in the direction and a length equal to the magnitude of the vector. The vector points in a direction from its tail to its head.
If the magnitude and direction of two vectors match, they are the same vector. This shows that if we move a vector to a different location without rotating it, the final vector will be the same as the initial vector. The vectors that denote force and velocity are two examples. The direction of force and velocity are both fixed. The size of the vector would represent the force's strength or the velocity's corresponding speed.
To know more about vectors, visit:
brainly.com/question/12937011
#SPJ4