1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreev551 [17]
3 years ago
15

How does the redshift of distant galaxies best support the big bang theory? It shows that the galaxies are becoming warmer. It s

hows that the galaxies are becoming larger. It shows that the galaxies are moving farther away. It shows that the galaxies are shrinking in size.
Physics
2 answers:
Elan Coil [88]3 years ago
7 0
It shows that galaxies are moving further away
cupoosta [38]3 years ago
5 0

Answer:

It shows that the galaxies are moving farther away.

Explanation:

When light from the galaxies is shifted towards the longer wavelengths, it is called red shift. When light shifts towards the shorter wavelengths, it is called blue shift. Big bang theory states how the primordial universe started expanding from a hot and dense singularity, in the process of evolution of the universe.

The  universe is expanding always. Galaxies that are a part of the universe keep expanding and move farther away from each other. The galaxies that are very far off appear to  move much faster than the nearby galaxies.

You might be interested in
A box is being moved with a velocity (v) by a force P (parallel to v) along a level horizontal floor. The normal force is (Fn),
labwork [276]

Answer:

Force (P) : Positive

Normal Force (Fn) : Zero

Weight (mg) : Zero

Kinetic Frictional Force (fk) : Negative

Explanation:

The work done by a force on an object is given by the following formula:

W = F.d

W = F d Cosθ

where,

W = Work Done

f = Force Applied

d = displacement

θ = Angle between force and displacement

<u>FOR FORCE (P)</u>:

Since, force P is parallel to the motion of the box. Therefore, θ = 0°

Hence,

W = P d Cos 0°

W = P d(1)

W = Pd

<u>Therefore, work done by force (P) is Positive.</u>

<u></u>

<u>FOR NORMAL FORCE (Fn) AND WEIGHT (W)</u>:

Since, normal force and weight are perpendicular to the motion of the box. Therefore, θ = 90°

Hence,

W = Fn d Cos 90°= mg d Cos 90°

W = Fn d(0) = mg d (0)

W = 0

<u>Therefore, work done by Normal Force (Fn) and Weight (mg) is Zero.</u>

<u></u>

<u>FOR KINETIC FRICTIONAL FORCE (fk)</u>:

Since, kinetic frictional force acts in the opposite direction of motion of the box. Therefore, θ = 180°

Hence,

W = fk d Cos 180°

W = fk d(-1)

W = -fk d

<u>Therefore, work done by Kinetic Frictional Force (fk) is Negative.</u>

<u></u>

8 0
3 years ago
Which of the following should NOT be discussed during safety training
Juli2301 [7.4K]
Is there suppose to be an image?
7 0
3 years ago
A nonconducting spherical shell, with an inner radius of 4 cm and an outer radius of 6 cm, has charge spread non uniformly throu
Aloiza [94]
In other words a infinitesimal segment dV caries the charge 
<span>dQ = ρ dV </span>

<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>

<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>

<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
6 0
3 years ago
Falls resulting in hip fractures are a major cause of injury and even death to the elderly. Typically, the hip’s speed at impact
Westkost [7]

Answer:

-5.8868501529 m/s² or -5.8868501529g

0.118909090909 s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow a=\dfrac{v^2-u^2}{2s}\\\Rightarrow a=\dfrac{1.3^2-2^2}{2\times 0.02}\\\Rightarrow a=-5.8868501529\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{-57.75}{9.81}\\\Rightarrow a=-5.8868501529g

The acceleration is -5.8868501529 m/s² or -5.8868501529g

v=u+at\\\Rightarrow t=\dfrac{v-u}{a}\\\Rightarrow t=\dfrac{1.3-2}{-5.8868501529}\\\Rightarrow t=0.118909090909\ s

The time taken is 0.118909090909 s

7 0
3 years ago
what is the name of the tool that allows you to copy two or more shapes into a single part? when working with 3D
Anna [14]

Answer:

Modeling tool or Align tool. it depends what type of sandbox platform you use

Explanation:

1

8 0
3 years ago
Other questions:
  • The wavelengths of light emitted by an excited atom are determined by the:
    11·2 answers
  • How to calculate displacement in physics?
    12·2 answers
  • A glider of mass 0.170 kg moves on a horizontal frictionless air track. It is permanently attached to one end of a massless hori
    12·1 answer
  • if the coolant in a refrigerator was not compressed back into a liquid after it flowed through the refrigerator what would happe
    7·2 answers
  • Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
    11·1 answer
  • 9) Cart 1 has a mass of 4 kg and an initial speed of 4 m/s. It eventually elastically collides with cart 2, whose mass is 6 kg,
    9·1 answer
  • B. A car is moving 4.0 m/s to the right. The car begins to accelerate at a rate of 1.5 m/s/s, to the right. After
    10·1 answer
  • An engineer has the task of producing an aluminum alloy with a density of 3.0 grams per cubic centimeter. She comes up with the
    6·1 answer
  • HI I am taking a quiz and I need help it’s science o.o:
    14·1 answer
  • Please answer this question ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!