Answer:
the rotational inertia of the cylinder = 4.85 kgm²
the mass moved 7.942 m/s
Explanation:
Formula for calculating Inertia can be expressed as:

For calculating the rotational inertia of the cylinder ; we have;




I ≅ 4.85 kgm²
mg - T ma and RT = I ∝
T = 


a = 4.1713 m/s²
Using the equation of motion

Answer:
17,947.02 Hz
Explanation:
length (L) = 62 cm = 0.62 m
tension (T) = 70 N
mass per unit length (μ) = 0.10000 g/cm = 0.010000 kg/m
maximum frequency = 18,000 Hz
f = 
f = 
f = n x 67.47
18,000 = n x 67.47
n = 266.8≈ 266
the 267th overtone is the highest overtone that can be heard by this person, and its frequency would be 26 x 67.47 = 17,947.02 Hz
The tension in the upper rope is determined as 50.53 N.
<h3>Tension in the upper rope</h3>
The tension in the upper rope is calculated as follows;
T(u) = T(d)+ mg
where;
- T(u) is tension in upper rope
- T(d) is tension in lower rope
T(u) = 12.8 N + 3.85(9.8)
T(u) = 50.53 N
Thus, the tension in the upper rope is determined as 50.53 N.
Learn more about tension here: brainly.com/question/918617
#SPJ1
Answer:
Average accelation = -4V
Explanation:

V=0 m/s (because the frog stopped)
V0 = V (average velocity)
t= 0,25 s
So;

Answer:
Rate of change of magnetic flux
Explanation:
The induced current is equal to the ratio of induced emf to the resistance of the conductor.
According to the Faraday's law of electromagnetic induction, the induced emf is proportional to the rate of change of magnetic flux.