1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
4 years ago
11

A vector has an x component of -27.5 units and a y component of 43.0 units. find the magnitude and direction of this vector.

Physics
1 answer:
Scorpion4ik [409]4 years ago
7 0
Magnitude ={(-27.5)^2+(43.0)^2}^(1/2)
=51.0 units
Direction=tan-1(43.0/-27.5)
=122 degrees
You might be interested in
What do you think would happen to the boiling point of water if you were to cook pasta near the Dead Sea in Israel, which is 1,2
mina [271]

Answer:

I think it will be the same.

5 0
3 years ago
Read 2 more answers
A car and a train move together along straight, parallel paths with the same constant cruising speed v(initial). At t=0 the car
kogti [31]

Answer:

t_1 = \frac{v_i}{a_i}

t_2 = \frac{v_i}{a_i}

Δd = v_it_1 = v_i^2/a_i

Explanation:

As v(t) = v_i + at, when the car is making full stop, v(t_1) = 0 . a = -a_i . Therefore,

0 = v_i - a_it_1\\v_i = a_it_1\\t_1 = \frac{v_i}{a_i}

Apply the same formula above, with v(t_2) = v_i and a = a_i, and the car is starting from 0 speed,  we have

v_i = 0 + a_it_2\\t_2 = \frac{v_i}{a_i}

As s(t) = vt + \frac{at^2}{2}. After t = t_1 + t_2, the car would have traveled a distance of

s(t) = s(t_1) + s(t_2)\\s(t_1) = (v_it_1 - \frac{a_it_1^2}{2})\\ s(t_2) = \frac{a_it_2^2}{2}

Hence s(t) = (v_it_1 - \frac{a_it_1^2}{2}) + \frac{a_it_2^2}{2}

As t_1 = t_2 we can simplify s(t) = v_it_1

After t time, the train would have traveled a distance of s(t) = v_i(t_1 + t_2) = 2v_it_1

Therefore, Δd would be 2v_it_1 - v_it_1 = v_it_1 = v_i^2/a_i

8 0
3 years ago
In each case the momentum before the collision is: (2.00 kg) (2.00 m/s) = 4.00 kg * m/s
Ivan

Answer:

Check Explanation.

Explanation:

Momentum before collision = (2)(2) + (2)(0) = 4 kgm/s

a) Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Momentum after collision = (sum of the masses) × (common velocity) = (2+2) × (1) = 4 kgm/s

Which is equal to the momentum before collision, hence, momentum is conserved.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Momentum after collision = (2)(0.5) + (2)(1.5) = 1 + 3 = 4.0 kgm/s

This is equal to the momentum before collision too, hence, momentum is conserved.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Momentum after collision = (2)(0) + (2)(2) = 0 + 4 = 4.0 kgm/s

This is equal to the momentum before collision, hence, momentum is conserved.

b) Kinetic energy is normally conserved in a perfectly elastic collision, if the two bodies do not stick together after collision and kinetic energy isn't still conserved, then the collision is termed partially inelastic.

Kinetic energy before collision = (1/2)(2.00)(2.00²) + (1/2)(2)(0²) = 4.00 J.

Scenario A

After collision, Mass A sticks to Mass B and they move off with a velocity of 1 m/s

Kinetic energy after collision = (1/2)(2+2)(1²) = 2.0 J

Kinetic energy lost = (kinetic energy before collision) - (kinetic energy after collision) = 4 - 2 = 2.00 J

Kinetic energy after collision isn't equal to kinetic energy before collision. This collision is evidently totally inelastic.

Scenario B

They bounce off of each other and move off in the same direction, mass A moves with a speed of 0.5 m/s and mass B moves with a speed of 1.5 m/s

Kinetic energy after collision = (1/2)(2)(0.5²) + (1/2)(2)(1.5²) = 0.25 + 3.75 = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

Scenario C

Mass A comes to rest after collision and mass B moves off with a speed of 2 m/s

Kinetic energy after collision = (1/2)(2)(0²) + (1/2)(2)(2²) = 4.0 J

Kinetic energy lost = 4 - 4 = 0 J

Kinetic energy after collision is equal to kinetic energy before collision. Hence, this collision is evidently elastic.

c) An impossible outcome of such a collision is that A stocks to B and they both move off together at 1.414 m/s.

In this scenario,

Kinetic energy after collision = (1/2)(2+2)(1.414²) = 4.0 J

This kinetic energy after collision is equal to the kinetic energy before collision and this satisfies the conservation of kinetic energy.

But the collision isn't possible because, the momentum after collision isn't equal to the momentum before collision.

Momentum after collision = (2+2)(1.414) = 5.656 kgm/s

which is not equal to the 4.0 kgm/s obtained before collision.

This is an impossible result because in all types of collision or explosion, the second law explains that first of all, the momentum is always conserved. And this evidently violates the rule. Hence, it is not possible.

6 0
3 years ago
Relate the buoyant force to increased depth
swat32

Answer:The buoyant force doesn't depend on the overall depth of the object submerged. In other words, as long as the object is fully submerged, bringing it to a deeper and deeper depth will not change the buoyant force. This might seem strange since the pressure gets larger as you descend to deeper depths.:

5 0
4 years ago
How can speed be defined
Anna11 [10]

Explanation:

C) distance / time

.......

6 0
3 years ago
Read 2 more answers
Other questions:
  • Everything we know about stars comes from studying their _____.
    10·1 answer
  • A firefighter who weighs 192 lb slides down an infinitely long fire pole that exerts a friction resistive force with magnitude p
    7·2 answers
  • A 62 pound box is on an incline. Determine the minimum force P that would result in the box starting to slide up the incline. (i
    14·1 answer
  • 1. Why are the speed values in the data table called "average" instead of "instantaneous"?
    6·1 answer
  • If a 1.3 kg mass stretches a spring 4 cm, how much will a 5.8 kg mass stretch the
    8·1 answer
  • 2. How do the phytochemicals present in various foods help us?<br>​
    8·1 answer
  • Find the weight of a 25 kg object.
    5·1 answer
  • List forms of energy which you use from morning when you wake up till you reach the school?
    14·1 answer
  • You can use a system of equations to graph and solve the polynomial equation 3 x cubed + x = 2 x squared + 1. Which statement is
    12·1 answer
  • A coil 3.55 cm in radius, containing 470 turns, is placed in a uniform magnetic field that varies with time according to B=( 1.2
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!