Answer:
Frequency,
Explanation:
Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?
It is given that,
Wavelength of a visible red light is,
Speed of light is,
We need to find the frequency of visible red light. It can be calculated using below relation.
So, the frequency of visible red light is .
Q = C.v
v = Q/C
v = 4 × 10^(-10)/250
= 4 × 10^(-10)/2.5 × 10^2
= 1.6 × 10^(-12) volt
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:
Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:
It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.