By definition,
q = 1.22y/D
Where,
q = min. angle
y = wavelength
D = Aperture diameter = diameter of the antenna
At distance "x" from the antenna,
L =xq = 1.22xy/D
Where, L = Min. distance
But, y =c/f = (3*10^8)/(16*10^9) = 0.01875 m
Substituting;
L = 1.22*5*10^3*0.01875/2.1 = 54.46 m
Answer:
-1500 m/s2
Explanation:
So the ball velocity changes from 10m/s into the wall to -8m/s in a totally opposite direction within a time span of 0.012s. Then we can calculate the average acceleration of the ball as the change in velocity over a unit of time.

Mechanical energy (ME) is the sum of potential energy (PE) and kinetic energy (KE). When the toy falls, energy is converted from PE to KE, but by conservation of energy, ME (and therefore PE+KE) will remain the same.
Therefore, ME at 0.500 m is the same as ME at 0.830 m (the starting point). It's easier to calculate ME at the starting point because its just PE we need to worry about (but if we wanted to we could calculate the instantaneous PE and KE at 0.500 m too and add them to get the same answer).
At the start:
ME = PE = mgh
ME = 0.900 (9.8) (0.830)
ME = 7.32 J
Answer:
625 W
Explanation:
Applying
P = W/t.................... Equation 1
Where p = power, W = Work, t = time
But,
W = Force (F) × distance (d)
W = Fd........................ Equation 2
Substitute equation 2 into equation 1
P = Fd/t.................... Equation 3
From the question,
Given: F = 5000 N, d = 30 m, t = 4 munites = (4×60) seconds = 240 seconds
Substitute these values into equation 3
P = (5000×30)/240
P = 625 Watt
Speed = frequency * wavelength