There are zero lone pairs of electrons on the central carbon atom in a Lewis Structure of CHI3. The correct option is b.
Explanation:
Lone pair electrons are those valence electrons of an atom which do not take part in bonding or left after the bonds are formed.
CH
carbon is the central atom in the compound having 4 valence electrons.
Each iodine molecule has 7 valence electrons.
H has 1 valence electron.
from the Lewis structure of CH
, it is seen that all four valence electrons of the carbon is involved in bonding with 3 atoms of iodine and 1 atom of hydrogen.
Thus when all valence electrons are involved in bonding no lone pair of electron is found in CH
that means zero lone pairs of electrons.
The octet of the iodine, carbon and hydrogen gets completed to form the compound.
Answer:
He is most well known for discovering the role Oxygen plays in combustion
Explanation:
Answer : The concentration of a solution with an absorbance of 0.420 is, 0.162 M
Explanation :
Using Beer-Lambert's law :

As per question, at constant path-length there is a direct relation between absorbance and concentration.

where,
A = absorbance of solution
C = concentration of solution
l = path length
= initial absorbance = 0.350
= final absorbance = 0.420
= initial concentration = 0.135 M
= final concentration = ?
Now put all the given value in the above relation, we get:


Thus, the concentration of a solution with an absorbance of 0.420 is, 0.162 M
Answer:
OBr₂
Explanation:
<em>The ionic character depends on the difference of electronegativity between the elements. The higher ΔEN, the greater the ionic character.</em>
SBr₂
ΔEN = |EN(S)-EN(Br)| = |2.5-2.8| = 0.3
OBr₂
ΔEN = |EN(O)-EN(Br)| = |3.5-2.8| = 0.7
SeCl₂
ΔEN = |EN(Se)-EN(Cl)| = |2.4-3.0| = 0.6
TeI₂
ΔEN = |EN(Te)-EN(I)| = |2.1-2.5| = 0.4
SCl₂
ΔEN = |EN(S)-EN(Cl)| = |2.5-3.0| = 0.5
OBr₂ is the molecule with the most ionic character.
Answer:
electrons
Explanation:
The photoelectric effect occurs when electrons are emitted from metal when the metal is struck by light of certain frequencies.
Some of the applications of this effect include photomultipliers (which are a key component in spectroscopy instruments) and night vision devices.