1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
8

2.5 g of helium at an initial temperature of 300 K interacts thermally with 9.0 g of oxygen at an initial temperature of 620 K .

A) What is the initial thermal energy of each gas?
B) What is the final thermal energy of each gas?
C) How much heat energy is transferred, and in which direction?
D) From He to O2 or O2 to He
E) What is the final temperature?
Physics
1 answer:
muminat3 years ago
7 0

Answer:

Explanation:

2.5 g of He = 2.5 / 4  mole

= .625 moles

9 g of oxygen = 9/32

= .28 mole of oxygen

C_p of He = 3/2 R

C_p of O₂ = 5/2 R

A ) Initial thermal energy of He = 3/2 n R T

= 1.5 x .625 x 8.32 x 300

= 2340 J

Initial thermal energy of O₂ = 5/2 n R T

= 2.5 x .28 x 8.32 x 620

= 3610.88 J

B ) If T be the equilibrium temperature after mixing

gain of heat by helium

= n C_p Δ T

= .625 x 3/2 R x ( T - 300 )

Loss of heat by oxygen

n C_p Δ T

= .28 x 5/2 R x ( 620 - T )

Loss of heat = gain of heat

.625 x 3/2 R x ( T - 300 ) = .28 x 5/2 R x ( 620 - T )

1.875 T- 562.5 = 868- 1.4 T

3.275 T = 1430,5

T = 436.8 K

Thermal energy of He

= 1.5 x .625 x 8.32 x 436.8

= 3407 J

thermal energy of O₂

= 2.5 x .28  x 8.32 x 436.8

= 2543.92 J

C )

Heat energy transferred

=  .28 x 5/2 R x ( 620 - T )

=  .28 x 5/2 x  8.32 x ( 620 - 436.8 )

1066.95 J

Heat will flow from O₂ to He

Final temperature is 436.8 K

You might be interested in
When you bent the plastic ruler, what did you observe in its size? ​
WARRIOR [948]

Answer:

The size will increase.

Explanation:

When you bend a plastic ruler, it's size will increase because it is elastic and will exhibit elastic deformation. When it is been bent, it will continue to stretch until it get to a point where it will not be able to regain it formal shape, it size wound of increase. Therefore when the ruler get to elastic limit and you have bend it to the point it cannot regain it's formal shape back, it will remain bent and if further force is apply on it,it will break.

3 0
4 years ago
according to newton's second law of motion of the net force acting on the object increases while the mass of the object remains
Licemer1 [7]

Answer:

The Acceleration will increase

Explanation:

Newton's Second Law of motion: It states that the rate of change of momentum is directly proportional to the applied force and takes places along the direction of the force.

It can be expressed mathematically as,

F ∝ m(v-u)/t

Where (v-u)/t = a

F  = kma.

F = force, m = mass of the body, a = acceleration, k = constant of proportionality which tend to unity for a unit force, a unit mass, and a unit acceleration.

Therefore,

F = ma.

From the equation above,

If the net force acting on a body increase, while the mass of the body remains constant, the acceleration will also increase.

4 0
3 years ago
uppose two train cars are moving toward one another, the first with a mass of 150,000 kg and a velocity of 0.300 m/s; the second
kondaur [170]

The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.

Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.

Let v represent the post-collision speed of the connected mass.

Utilize the idea of momentum.

The speed of the trains is constant both before and after a collision.

150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120

After colliding, they move at a speed of 0.122 m/s towards the direction of the right.

Learn more about velocity here-

brainly.com/question/18084516

#SPJ4

7 0
1 year ago
PLEASE ANSWER ASAP!.!.!!.!!!!.!.!.
lbvjy [14]
1. Most PE, because PE is directly proportional to distance (height)
Height: 100 meters
Speed: 0 mph

2. Most KE, because KE is directly proportional to speed
Height: 10 meters
Speed: 40 mph

3. Most TE, average KE
Height: 10 meters
Speed: 40 mph

4. The skater gains thermal energy as she goes down the slope, because the speed of the skater increases, so it increases the total kinetic energy of the particles, and makes them vibrate faster, resulting in a higher temperature.
8 0
3 years ago
Air enters a turbine operating at steady state at 8 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinet
kobusy [5.1K]

Answer:

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

Explanation:

To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables

Mathematically this can be determined as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

Where

Temperature at inlet of turbine

Temperature at exit of turbine

Pressure at exit of turbine

Pressure at exit of turbine

The steady flow Energy equation for an open system is given as follows:

m_i = m_0 = mm(h_i+\frac{V_i^2}{2}+gZ_i)+Q = m(h_0+\frac{V_0^2}{2}+gZ_0)+W

Where,

m = mass

m(i) = mass at inlet

m(o)= Mass at outlet

h(i)= Enthalpy at inlet

h(o)= Enthalpy at outlet

W = Work done

Q = Heat transferred

v(i) = Velocity at inlet

v(o)= Velocity at outlet

Z(i)= Height at inlet

Z(o)= Height at outlet

For the insulated system with neglecting kinetic and potential energy effects

h_i = h_0 + WW = h_i -h_0

Using the relation T-P we can find the final temperature:

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}\\

\frac{T_2}{1600K} = (\frac{0.8bar}{8nar})^{(\frac{1.4-1}{1.4})}\\ = 828.716K

From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

W = h_i -h_0W = C_p (T_1-T_2)W = 1.005(1600 - 828.716)W = 775.140kJ/Kg

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

4 0
3 years ago
Other questions:
  • Somebody please explain how to solve this. Thanks in advance!
    15·1 answer
  • What is the lowest level of waves on the electromagnetic energy spectrum?
    7·1 answer
  • A student submerges an irregularly object in a graduated cylinder half filled with water. The level of the water in the cylinder
    15·1 answer
  • A Young'sdouble-slit interference experiment is performed with monochromatic light. The separation between the slits is 0.44 mm.
    10·1 answer
  • A stream moving with a speed of 7.1 m/s reaches a point where the cross-sectional area of the stream decreases to one half of th
    15·1 answer
  • Atoms in a solid are not stationary, but vibrate about their equilibrium positions. Typically, the frequency of vibration is abo
    10·1 answer
  • (a) Calculate the magnitude of the gravitational force exerted on a 445-kg satellite that is a distance of 1.77 earth radii from
    7·1 answer
  • A burning candle is covered by a jar as shown in the picture. The whole arrangement has a mass of 500 g. What will be the approx
    15·2 answers
  • Which example show harassment?
    10·2 answers
  • Which of the following IS NOT a part of an electromagnet?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!