1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikitich [7]
2 years ago
6

What is a magnetic flux thru closed surface

Physics
1 answer:
dezoksy [38]2 years ago
6 0
Gauss’s Law for magnetism
You might be interested in
When one of the two planes of vibration of a light wave is blocked, the resulting wave is called
grandymaker [24]
I think the answer would be d. polarized. "<span>Polarized </span>light waves<span> are </span>light waves<span> in which the </span>vibrations<span> occur in a </span>single<span> plane. The process of transforming unpolarized </span>light<span> into polarized </span>light<span> is </span>known<span> as polarization."</span>
6 0
3 years ago
Read 2 more answers
A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
STALIN [3.7K]

Answer:

(a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

Explanation:

Given that,

Nozzle diameter = 0.25 in = 0.00635 m

Hose pipe diameter = 0.64 in = 0.016256 m

Pressure = 1.9 atm =192518 Pa

(a). We need to calculate the speed of the water in the nozzle

Flow Speed at the inlet pipe will be given by using Continuity Equation

Q_{1}=Q_{2}

v_{1}A_{1}=v_{2}A_{2}

v_{1}=v_{2}\times(\dfrac{A_{2}}{A_{1}})

Where, A = area of pipe

A=\pi\times \dfrac{d^2}{4}

v_{1}=v_{2}\times(\dfrac{d_{2}^2}{d_{1}^2})

Put the value into the formula

v_{1}=0.46\times\dfrac{(0.016256)^2}{(0.00635)^2}

v_{1}=3.014\ m/s

The speed of the water in the nozzle is 3.014 m/s.

(b). We need to calculate the pressure in the nozzle

Using Bernoulli's Theorem,

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2+\rho gh_{2}

Where, h_{1}=h_{2}

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2

P_{1}=P_{2}+\dfrac{1}{2}\rho(v_{2}^2-v_{1}^2)

Put the value into the formula

P_{1}=192518 +\dfrac{1}{2}\times1000\times((0.46)^2-(3.014)^2)

P_{1}=188081.702\ Pa

P=1.86\ atm

Hence, (a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

7 0
2 years ago
The closest distance a book can be read from a pair of reading eyeglasses (Power = 1.55 dp) is 26.0 cm. What is the near distanc
Mnenie [13.5K]

Answer:

The image distance is 20.0 cm.

Explanation:

Given that,

Power = 1.55 dp

Distance between book to eye = 26.0+3.00=29.0 cm

We need to calculate the focal length

Using formula of focal length

f = \dfrac{1}{P}

Put the value into the formula

f=\dfrac{1}{1.55}

f=0.645\ m

f=64.5\ cm

We need to calculate the image distance

Using lens formula

\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}

\dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{-u}

Put the value into the formula

\dfrac{1}{v}=\dfrac{1}{64.5}-\dfrac{1}{-29}

\dfrac{1}{v}=\dfrac{187}{3741}

v=20.0\ cm

Hence, The image distance is 20.0 cm.

5 0
2 years ago
Assume that the position vector of A is r=i+j+k . Determine the moment about the origin O if the force F=(1)i+(0)j+(5)k . The mo
ddd [48]

Answer:

M₀ = 5i - 4j - k

Explanation:

Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e

M₀ = r x F

From the question,

r = i + j + k

F = 1i + 0j +  5k

Therefore,

M₀ = (i + j + k) x (1i + 0j +  5k)

M₀ = \left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]

M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)

M₀ = i(5) - j(4) + k(-1)

M₀ = 5i - 4j - k

Therefore, the moment about the origin O of the force F is

M₀ = 5i - 4j - k

3 0
2 years ago
A 4350 kg truck, driving 7.39 m/s, runs into the back of a stationary car. After the collision, the truck moves 4.55 m/s and the
DiKsa [7]

Answer:

Mass of car = 1098 kg

Explanation:

Here law of conservation of momentum is applied.

Let mass of car be m.

Initial momentum = Final momentum.

Initial momentum = 4350 x 7.39 + m x 0 = 32416.5 kgm/s

Final momentum = 4350 x 4.55 + m x 11.5 = 19792.5+11.5m

We have

      19792.5+11.5m = 32416.5

        m = 1097.97 kg

Mass of car = 1098 kg

4 0
3 years ago
Other questions:
  • An aluminum rod is 10.0 cm long and a steel rod is 80.0 cm long when both rods are at a temperature of 15°C. Both rods have the
    12·1 answer
  • Which of the following is not found in the nucleus of an atom?
    12·2 answers
  • If you walk 3.0 km to the east and then 4.0 km to the north, what is the magnitude of your displacement from your original posit
    14·1 answer
  • Which of the following actions is best understood using Einstein's concepts rather than Newtonian physics?
    10·2 answers
  • Ronald wants to see if a new shower cleaner works better in removing soap than his old cleaner.  He uses the new cleaner on one
    8·1 answer
  • The cable of a hoist has a cross-section of 80 mm 2 . The hoist is used to lift a crate weighing 500 kg. What is the stress in t
    6·1 answer
  • An object mass 5kg, moving at a velocity of 10metre per seconds is suddenly heat by a force of 2N for a time 3sec. Find its new
    8·1 answer
  • If the loop is then converted into a rectangular loop measuring 2.1cm on its shortest side in 6.50ms, and the average emf induce
    15·1 answer
  • What is the primary reason that astronomers put telescopes and other instruments above Earth's atmosphere?
    7·1 answer
  • Which type of telescope is best used to detect distant planets?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!