Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:

Explanation:
option A is the correct answer, if the gravitational acceleration is taken 10m/s²(rounding of 9.8/ms²).
hope this helps you.
The liver, because its liver cancer.. lol
The liver filters your blood, without it, your blood will stay 'dirty' and cannot do its jobs like it usually should be
The answer is <em>B. 5/4</em> or <em>1.25</em>