Answer:
K = K1×K2 = [CO2] [H2]⁴ / [H₂O]² [CH4]
Explanation:
Based on the reactions:
CH2 (g) + H2O(g) ⇄ CO (g) + 3H2 (g) K1
CO (g) + H2O (g) ⇄ CO2 (g)+H2(g) K2
The sum of both reactions is:
CH4 (g)+2H2O (g) ⇄ CO2(g)+4H2(g) And K of the reaction is: K = K1×K2
K is defined as the ratio between concentrations of products and reactans. Each compound must be elevated to its coefficient in the reaction. That is:
<h3>K = K1×K2 = [CO2] [H2]⁴ / [H₂O]² [CH4]</h3>
The answer to your question is the option D, it moves crust plates around
<span>b) a positive metal ion and a negative nonmetal ion.
</span>Because generally ions of non-metal elements (such as the halogens) are negatively charged while ions of metal elements (such as the alkali earth metals) are positively charged. The differences in their changes causes strong electrostatic attraction (an ionic bond).
Answer:
C.
Explanation:
![\frac{1x10}x^{-14} = 1x10^{-9} \\ x =1x10^{-5} \\\\[OH][H]= 1x10^{-14}](https://tex.z-dn.net/?f=%5Cfrac%7B1x10%7Dx%5E%7B-14%7D%20%3D%201x10%5E%7B-9%7D%20%5C%5C%20x%20%3D1x10%5E%7B-5%7D%20%5C%5C%5C%5C%5BOH%5D%5BH%5D%3D%201x10%5E%7B-14%7D)
The concetration can be found by dividing the water ph constant by the [H=] or [OH] to find the other